ROS4i0OS : Native ROS Development on iOS Devices

Ronan Chauvin*, Frangois Ferland*, Dominic Létourneau*, Francois Michaud*
*IntRoLab — Intelligent, Interactive, Integrated and Interdisciplinary Robotics Lab
3IT - Interdisciplinary Institute for Technological Innovation, Université de Sherbrooke, Sherbrooke (QC) Canada J1K 0AS
Email: {Ronan.Chauvin, Francois.Ferland, Dominic.Letourneau, Francois.Michaud } @USherbrooke.ca

I. INTRODUCTION

Smartphones and tablets are now part of our everyday
lives, facilitating access to information through intuitive
graphical interfaces. They can make great devices to work
with robots [1] because they integrate a lot of sensors
and reasonable computing power. Using ROS [2] on those
devices would facilitate code reuse and integration with
existing robotics applications and libraries.

Porting ROS applications to iOS is difficult because there
is no native support for ROS on the iOS platform. Often,
interaction with ROS is accomplished using a standard web-
based approach (e.g., using rosbridge), with the web
server hosted on the robot’s computer, to ensure portabil-
ity and compatibility with standard mobile web browsers.
However, the web-based approach has its limitations and
does not offer all the functionalities and computing capa-
bilities a mobile device has to offer. Another possibility
is to use a bridge application on the robot’s side that
can translate messages between ROS and another protocol.
The programmer also needs to write an application on the
mobile device using the same protocol, which somewhat
duplicates the effort. One popular example is the use of
the ROSOSC package and the Open Sound Control (OSC)
protocol in the rososc package [3], used in conjunction
with the TouchOSC iOS application to control the robot and
monitor its status. Such development is time consuming and
requires constant code maintenance since both protocols and
messages types are evolving over time. The ROSpod project
(http://ros.org/wiki/rospod) demonstrates a proof-of-concept
of implementing a ROS port on iOS, but it did not provide a
straightforward way to automatically build already existing
ROS code for i0S. Futhermore, it has not been updated for
recent ROS releases.

Therefore, we decided to concentrate our efforts on mak-
ing a native port of ROS for iOS. Our port is not a re-
implementation of the ROS environment, but a way to
build standard ROS packages as iOS frameworks. The only
requirement is to have a ROS Master already running on
a separate computer. Our design is based on the following
guidelines:

o Start from ROS sources hosted on GitHub and apply
minimal patches for iOS compilation.

« Concentrate on the C++ portion of ROS’ core libraries

o Automate the creation of iOS frameworks from ROS

packages for use with Apple’s Xcode development tool.

o Reuse all the communication protocols, messages and

services available from ROS.

e Create complete ROS nodes running on the mobile

device by reusing the same C++ code.

o Design an architecture to interface ROS data structures

with iOS user interface elements.

The video attachment shows how the iOS frameworks are
generated along with four use case scenarios demonstrating
useful ROS4i0OS functionalities and tools to create complete
applications. These functionalities are:

« Display of maps, robot models and trajectories.

o Send/Receive a video stream using ROS image transport

protocol and H.264 codec.

« Display of a point cloud from color and depth data.

o Send/Receive a sound stream.

« Remote control using joystick or accelerometer data.

The most CPU intensive scenario is the real time
display of the point cloud, which requires the decod-
ing of two compessed video feeds (H.264 and image
depth compression) and displays OpenGL elements. The
application uses 65% of the dual core CPU of an
iPhone 5 (A6 chip). The procedure and documentation
required to create the ROS4iOS frameworks are available
at https://github.com/introlab/ros_for_ios.

II. CONCLUSION AND FUTURE WORK

With ROS4i0S, the programmer can concentrate on the
application instead of porting code from ROS or imple-
menting bridging protocols and applications, which saves
a considerable amount of time. Future work consists of
developing different HRI scenarios using ROS4iOS.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

REFERENCES

[1] S. O. Adalgeirsson and C. Breazeal, “Mebot: A robotic platform for
socially embodied telepresence,” in Proceedings of the 5th ACM/IEEE
international conference on Human-robot interaction, 2010, p. 15-22.

[2] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[3] D. Wessel and M. Wright, “Problems and prospects for intimate musical
control of computers,” Computer Music Journal, vol. 26, no. 3, p.
11-22, 2002.



