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Abstract— To be used on a mobile robot, speech/non-speech
discrimination must be robust to environmental noise and to the
position of the interlocutor, without necessarily having to satisfy
low-latency requirements. To address these conditions, this
paper presents a speech/non-speech discrimination approach
based on pitch estimation. Pitch features are robust to noise
and reverberation, and can be estimated over a few seconds.
Results suggest that our approach is more robust compared to
the use of Mel-Frequency Cepstrum Coefficients with Gaussian
Mixture Models (MFCC-GMM) under high reverberation levels
and additive noise (with an accuracy above 98% with a latency
of 2.21 sec), which makes it ideal for mobile robot applications.
The approach is also validated on a mobile robot equipped with
a 8-microphone array, using speech/non-speech discrimination
based on pitch estimation as a post-processing module of a
localization, tracking and separation system.

I. INTRODUCTION

Real world environments are filled with a wide variety
of sounds that can be categorized as either speech or non-
speech sources (e.g., music, phone ring, door closing, fan
noise). Robots can certainly benefit from analyzing these
sounds to acquire various types of information about the
world, such as: 1) what are the sound sources and where
are they coming from; 2) what kinds of sources are making
the sounds; and 3) what information can be extracted from
these sound sources. For Type 1, localization, tracking and
separation of sound sources are typical tasks performed by
robot audition systems such as ManyEars [1] or HARK
[2]. For Type 3, speech recognition can be performed to
recognize the words pronounced by a speaker [3], [4], [5],
while speaker identification can provide the identity of the
speaker regardless of the words pronounced [6]. For non-
speech sources, music recognition and beat tracking have
been demonstrated [7], [8], as recognition of daily sounds
[9], [10]. Sasaki et al. [10] also propose to identify a
sound from a pre-trained database composed of daily sounds
and speech. However, their approach requires an offline
database of sounds for training, and is generally sensitive
to the environment [9], [10], [11]. Before attempting to
extract information from the sound sources, it may be more
appropriate to discriminate between speech and non-speech
(Type 2) to then select the proper recognition algorithm
to apply on the audio streams to process, and incidentally
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improve robustness, processing time and adaptivity to the
environment of the artificial audition system.

Voice Activity Detection (VAD) is a type of speech/non-
speech discrimination algorithm performed on signals cap-
tured by close-talking devices (with no or little reverberation)
to initiate speech coding or speech recognition, with minimal
latency. VAD can be done using trained support vector ma-
chine with subband signal-to-noise ratios (SNRs) extraction
through denoising and contextual subband feature extraction
[12]. Discrimination may also be performed using the in-
tegrated bispectrum and the average likelihood ratio [13],
as well as with fuzzy logic with denoised subband SNRs
and zero crossing rates [14], and multiscale spectro-temporal
modulations [15]. Applying these techniques to speech/non-
speech discrimination on robots is difficult because of the
presence of noise and reverberation in the signals, and the
lack of having trained models that include information about
environmental noise. Brueckmann et al. [16] and Heck et al.
[17] present approaches that uses Mel-Frequency Cepstral
Coefficients (MFCC) and pretrained models of daily sound
events to discriminate from speech. However, MFCC features
are sensitive to noise [18], [19], and speech/non-speech
discrimination is limited to the models of daily sounds
available.

For human-robot interaction, low-latency is a soft require-
ment for speech/non-speech discrimination because a sound
source can be tracked over many seconds and the classifi-
cation may be performed after a few seconds to determine
whether or not the source originates from a human talking
or some daily sound events (hand claps, phone ringing,
door slam, etc.). Speech is made of voiced and unvoiced
segments, and a large observation window guarantees that
some voiced segments are captured. In these conditions,
pitch, present sporadically in speech, becomes a suitable
feature for speech/non-speech discrimination as it is robust to
channel modulation and reverberation. Also, the fundamental
frequency and the harmonics of speech usually have high
SNRs, and are therefore robust to background noise. The
presence of pitch features makes it therefore possible to
discriminate easily between speech and non-speech signals,
without requiring pre-identified models of daily sounds.
Nielsen et al. [20] present a method that uses pitch and an
additional reliability feature to classify sounds as speech,
music or noise. Although this method is robust to channel
distortion, it is not suitable for noisy environments because
the reliability feature used, as opposed to pitch, is sensitive
to background noise.

This paper describes a new speech/non-speech discrimi-
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Fig. 1: ManyEars with a speech/non-speech discrimination module

nation approach based on pitch estimation, which only uses
pitch features, as opposed to Nielsen et al. [20] which also
make use of a reliability feature. The paper is organized as
follows. Section II presents an overview of the system in
which speech/non-speech discrimination is used for robot
audition. Section III demonstrates the pitch features pro-
posed, and Section IV describes how these features are
used to perform speech/non-speech discrimination. Section
V compares using simulations the proposed method with
speech/non-speech discrimination using MFCC features, and
demonstrates the performance of the proposed method on a
mobile robot platform.

II. SYSTEM OVERVIEW

Figure 1 provides an overview of the system. It is based on
ManyEars [1], which uses a 8-microphone array to perform
sound source localization, tracking and separation on mobile
robots. Sound source localization is done using General
Cross Correlation with Phase Transform Weighting (GCC-
PHAT) and provides potential positions in space for the
active sound sources. Tracking is implemented using particle
filters to follow in space one or many active sources as
they move over time. The Separation module then reduces
the interference from competing sources and enhances the
sound stream of each individual source using Geometric
Source Separation (GSS). When only one source is active,
GSS is then similar to a delay-and-sum beamformer, which
reduces reverberation and improves the SNR of the active
sound source. Then, the objective of the speech/non-speech
discrimination module is to classify the complete tracked
source segment as speech or non-speech.

To provide as an example, Figure 1 also illustrates a simple
case scenario involving an alarm clock located at the angle
0 = 0, that starts to emit sounds at time ¢ = t;. The source
is tracked and after a time delay (i.e., latency) of At seconds,
it is classified as non-speech by the system. An interlocutor
then starts talking at ¢ = t2 seconds and is classified as
speech after the same time delay. The speech/non-speech
information may then be used by the robot to perform
automatic speech recognition only on speech sources.

III. PITCH FEATURES

The pitch p is normally given in Hz but can also be
expressed as a time delay in seconds (1/p) or in samples
(Fs/p) — the latter is used to explain our approach. To derive
pitch features, a rectangular window of N samples is applied
on the discrete-time input signal z[n| from an unknown
source. Short-Time Fourier Transform (STFT) coefficients
X, [k] of the signal at each frame ¢ and bin k are calculated
using (1). The variables AN and j stand for the hop size
and the imaginary number \/—1, respectively.

N—-1
2mkn
X; k| = p — —j
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The autocorrelation R;[n| is computed according to (2),
where the operator * stands for the complex conjugate.
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RZ' [n] =
Empirically, we set ¢ to keep peaks that dominate the
three neighboring bins as potential pitch delay candidates as
expressed by (3), and the index of the peak with the greatest
value is selected according to (4).

o] = {Ri[n] Riln] > Riln+q).q = 3,22, 41
0 otherwise
7; = arg max (RZ [n]) )

The variable 7; is an approximation of the exact maximum
delay 7; of the autocorrelation caused by discrete sampling.
In fact, 7; is a random variable with a uniform distribution
between 7; — 0.5 and 7; + 0.5. This error is negligible when
the time delay is estimated, but influences significantly the
estimation of the time delay difference in time (A7;). A new
delay 7; is obtained from quadratic interpolation as expressed
by (5), which reduces the error introduced by discretization
of the time delay [21].
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Our approach is based on three realistic working hypothe-
ses related to pitch within speech signals [22]:

e Hj: The pitch of human speech for an adult (man or
female) usually lies between 80 Hz and 500 Hz.

o Hj: The pitch of human speech varies slowly in time.

« Hs: Pitch is observed in voiced segments, and the ratio
of the duration of these segments over the overall signal
duration is significant.

The strategy is to identify speech frames that are good
voiced frame candidates according to hypotheses H; and
H,. The ratio of the number of voiced frames over all
frames is then computed over a finite time window. If this
ratio is high enough to satisfy hypothesis Hj, then the
signal within the finite time window is classified as speech.
This classification method introduces some latency since a
representative amount of frames must be gathered before
a decision is made. However, as explained previously, the
objective is to classify a whole sound segment obtained from
the localization, tracking and separation system, and not to
perform a frame-by-frame VAD.

A frame is considered to be a voiced frame candidate if
the delay lies within the pitch human range (defined by the
parameters T,,;, and T,,4,) given by hypothesis H;. The time
delay difference AT; is also investigated to assess hypothesis
H,, and is obtained by (6).

—Tic1 6)

The instantaneous delay difference AT; gives some indi-
cations about the pitch dynamics, but is often insufficient to
identify long-term variations in the delay. In fact, in speech
signals, the delay usually increases or decreases over a large
period of time, while in non-speech signals A7; may oscillate
between positive and negative values without a significant
net increase or decrease. To capture long-term variations,
a smoothed time delay variable ¢; is introduced in (7).
When the delay difference magnitude is smaller than a fixed
threshold (A7,,q42), ¢; 18 initialized to AT; and is recursively
updated according to the rate set by «. The magnitude of the
delay difference is discarded when it is above A7, 4., as it
usually indicates a jump between random delay values.

AF =7

~ AT < ATmax
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When 7; is within speech range and ¢; is large enough to
match speech delay variation (greater than the fixed threshold

®min), the frame i is considered to be a speech voiced frame.
These conditions are summarized by (8), where v; = 1 stands
for a voiced frame and v; = 0 an unvoiced frame.

®)

o 1 Tmin < 771 < Tmazy |¢2| > ¢min
1 T .
0 otherwise

The ratio r of voiced frames in a window size of M frames
is defined by (9).

] M1
r= A v; )
=0
An utterance is classified as speech when this ratio exceeds
a fixed threshold (g, between O and 1) and considered as
non-speech sound otherwise, as expressed by (10).

d— {speech r>Tr)

(10)
non speech 7 < rg

V. RESULTS

To consider a wide range of noise and reverberation
conditions, tests of our speech/non-speech discrimination
module were first done in simulation, to then validate the
entire system on a mobile robot. Table I presents the pa-
rameters used with our approach. These parameters were
fixed empirically as follows. The sample rate F; matches the
sample rate used by ManyEars. Parameter IV is set to have
an analysis window of 85 msec that captures long pitch time
periods of male speakers. The hopsize AN is selected to
ensure a significant overlap between frames. The parameters
Tmin and T4 are selected to define the pitch range between
80 Hz and 500 Hz. A large value AT, is used to detect
random jumps in AT;, and we observed pitch variations in
speech and non-speech signals to set o and ¢y,

TABLE I: Parameters of our pitch speech/non-speech dis-
crimination module

Parameter | Value
F 48000
N 4096
AN 512
Tmin 96
Tmaz 600
ATmazx 20
« 0.3
Pmin 0.5

A. Simulation

The reference signal used for the simulated experiments
consists of 56 minutes of male and female speech and 19
minutes of daily event sounds (hand clap, footsteps, phone
ringing, alarm clock, door slam, etc.). Half the data in speech
and daily events are chosen for training, and the other half
is used for testing. MFCC-GMM training is performed using
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Fig. 2: Histograms of the ratio of voiced (blue) and unvoiced
(red) frames according to M

the Expectation Maximization (EM) algorithm [23] applied
on clean data, while no explicit training is required for the
proposed classification system based on pitch (the parameter
ro 1S chosen empirically to be 0.12). Testing is then per-
formed on noisy data, which are corrupted by reverberation
and noise. Room impulse responses are generated using the
Allen and Berkley image method to simulate reverberation
[24]. Three types of noise are added: white noise, fan noise
and burst noise. Burst noise is made of bursts of one second
of white gaussian noise, spaced by silence periods of one
second. Figure 2 illustrates the distribution of the ratio of
voiced frames (r) for three window sizes (M). M needs to be
large enough to ensure good discrimination between speech
and non-speech, but small enough to keep latency under an
acceptable time interval. As shown, when M increases, the
discrimination between the ratios of voiced frames for speech
and non-speech sources increases. Setting M = 200 provides
good discrimination and an acceptable latency slightly above
2 sec.

We also compared the proposed method with the Mel
Frequency Cepstrum Coefficients features (MFCC) [17],
[25]. Heck et al. [17] use frames of 1024 samples separated
by a hop size of 512 samples. The power of the spectrum
is multiplied by a filterbank of 24 triangular filters mapped
on a Mel scale. The log value of the power in each filter is
computed, and then unitary discrete cosine transform (DCT)
is applied. The 13 first coefficients after the DC coefficient
are extracted, and first and second order temporal derivatives
are computed, creating a 39-dimension MFCC feature. Kraft
et al. [25] modelize speech and non-speech features using
Gaussian Mixture Models (GMM) with diagonal covariance
matrix. In our experiments, we used 50 gaussians instead
of 128 as proposed in [25], to avoid overfitting since we
have less training data. When testing, the probability of each
MEFCC feature is computed for the speech and non-speech
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Fig. 3: Distribution of clean and noisy MFCC features (first
coefficient) for speech and environmental noise

GMMs, and the sum of the log probabilities is computed
over M frames. The block of frames is classified as speech
if the sum computed using the speech GMM is greater than
the one obtained with using non-speech GMM.

A true positive TP occurs when a speech signal is
classified as speech, a true negative TN when a non-speech
signals is classified as non-speech, a false negative F'IN
occurs when a speech signal is classified as non-speech, and
a false positive F'P takes place when a non-speech signal is
classified as speech. Accuracy is measured according to (11)
[26]. An accuracy of 1.0 is desirable as it implies that the
approach only generates true positives and true negatives.

Y>TP+ TN
>TP+Y FP+Y FN+Y TN

Table II shows the performances of the proposed system
and the MFCC-GMM system. When the SNR is high,
performances of both system are similar and close to 100%,
with the proposed approach being slightly more accurate in
general. However, when the SNR is below 10 dB, the MFCC-
GMM accuracy drops significantly, whereas the performance
of the proposed system remain high. In some cases, such as
when the reverberation time is 0 msec and the SNR is 0
dB with burst noise, the accuracy of the proposed method is
more than twice the MFCC-GMM accuracy (100% vs 45%).

The accuracy of the proposed method is higher when SNR
is low because the proposed pitch features are more robust
than the MFCC features. Figure 3 illustrates the distribution
of the first coefficient of the MFCC feature for the clean
and noisy speech and environmental noise. Both speech and
environmental noise MFCC distributions shift significantly
when noise is added, and thus a pretrained model under clean
conditions no longer models noisy distributions properly.
Figure 4 shows the clean and noisy distribution of the pitch
feature r for speech and environtmental noise. In this case,
although the speech distribution slightly shifts towards zero,
a clear separation between speech and environmental noise
remains between r = (0.1 and r = 0.2.

(In

accuracy =

B. Experiments on a Mobile Robot

The IRL-1 robot shown by Figure 5 is equipped with
a eight-microphone array and the 8SoundUSB audio card
[27] and was used for the trials. A male participant posi-
tioned himself at different locations around the robot and
either spoke or produced a sound (hands clapping, coffee



TABLE II: Accuracy of the proposed system and MFCC-GMM (in parenthesis)

Noise type SNR Reverberation time (msec)
0 250 500 750 1000
20dB | 100% (99%) | 100% (99%) | 100% (99%) | 99% (99%) 99% (99%)
15dB | 100% (98%) | 100% (98%) | 100% (98%) | 99% (97%) 99% (96%)
White 10dB | 100% (97%) | 100% (95%) | 100% (95%) | 99% (95%) 99% (95%)
5dB | 100% (69%) | 99% (60%) | 100% (67%) | 99% (71%) 99% (73%)
0dB | 100% (50%) | 99% (50%) 99% (50%) 98% (50%) 98% (51%)
20dB | 100% (99%) | 100% (99%) | 100% (99%) | 99% (100%) | 99% (100%)
15dB | 100% (96%) | 99% (98%) | 100% (99%) | 99% (100%) | 99% (100%)
Fan 10dB | 100% (98%) | 100% (97%) | 100% (98%) | 99% (98%) 99% (98%)
5dB | 100% (70%) | 100% (61%) | 100% (68%) | 99% (72%) 99% (74%)
0dB | 100% (50%) | 100% (50%) | 100% (50%) | 98% (50%) 98% (51%)
20dB | 100% (99%) | 100% (99%) | 100% (99%) | 99% (99%) 99% (99%)
15dB | 100% (99%) | 100% (99%) | 100% (99%) | 99% (99%) 99% (98%)
Burst 10dB | 100% (99%) | 100% (97%) | 100% (97%) | 99% (97%) 99% (98%)
5dB | 100% (66%) | 100% (58%) | 100% (66%) | 99% (10%) 99% (72%)
0dB | 100% (45%) | 99% (46%) | 100% (48%) | 98% (47%) 98% (48%)
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Fig. 4: Distribution of clean and noisy pitch features r for
speech and environmental noise

cup clicked with a spoon, keys jangling, foot steps, phone
ringing) for 10 sec at a time.

The reverberation level of the room was RT60 = 600 msec,
and the SNR at each microphone varied between 10.7 dB
and -5.5 dB (the noise mainly came from the fans onboard
the robot, and their position relative to the microphones af-
fected the SNRs differently). ManyEars’ localization, track-
ing and separation modules found the azimut position of
the source, and then the speech/non-speech discrimination
module tagged the sound source as speech and non-speech.
Figure 6a shows the position of each sound source and
how it was classified (green for speech, red for non-speech).
Figure 6b illustrates the tracked sources. A newly tracked
source is initially shown in blue, and then changes color as
it is classified as speech (green) or non-speech (red). Sound
source tracking of the system could be improved to remove
pauses (such as in situation A), but overall speech/non-
speech discrimination is performed properly. The system
performs classification after 2 sec of continuous tracking, and
this explains the second classifications observed in segments
B, C, D, E and F when tracking resumes after a pause. All
classifications performed by the system in Fig. 6b match
the type of sounds presented in Fig. 6a, which confirms the

Fig. 5: IRL-1 robot with microphone locations identified by
green circles

robustness and high accuracy of the proposed method.

VI. CONCLUSION

This paper presents a new speech/non-speech discrimina-
tion approach based on pitch estimation to make it robust to
reverberation and additive noise. Simulations clearly demon-
strate that the proposed system, which uses pitch features for
speech/non-speech discrimination, is more robust to noise
than a classification system based on the MFCC features
and GMMs. Moreover, as opposed to the MFCC-GMM
system, the approach works without a priori models of non-
speech events, which makes it convenient for use on mobile
robots operating in dynamic and changing environments. In
future work, we plan to improve tracking and use the pitch
estimation method to classify multiple sound sources simul-
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taneously active. We also want to study how pitch features
can be used to improve speaker identification performance.
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