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Abstract— Localization of sound sources in adverse envi-
ronments is an important challenge in robot audition. The
target sound source is often corrupted by coherent broadband
noise, which introduces localization ambiguities as noise is
often mistaken as the target source. To discriminate the time
difference of arrival (TDOA) parameters of the target source
and noise, this paper presents a binary mask for weighted gen-
eralized cross-correlation with phase transform (GCC-PHAT).
Simulation and experiments on a mobile robot suggest that
the proposed technique improves TDOA discrimination. It also
brings the additional benefit of modulating the computing load
requirement according to voice activity.

Index Terms— TDOA, GCC-PHAT, binary mask, sound
source localization, robot audition

I. INTRODUCTION

Robot audition provides important cues for mobile robots
to interact with their environment. Computational Auditory
Scene Analysis (CASA) consists in, amongst other, local-
izing and separating a mixture of sound sources. Speech
recognition and speaker identification are then performed
on these separated sound sources [1], [2], [3]. Localization
is usually the first step in the robot audition processing
sequence, as it allows the robot to focus its attention toward
a specific direction and use the localization information to
enhance sound source separation.

Delay-and-sum beamformer is a popular technique to
perform sound source localization with a microphone array
[4]. This method relies on time difference of arrival (TDOA)
estimation between each pair of microphones. Generalized
Cross-Correlation with Phase Transform (GCC-PHAT) is
usually used to perform TDOA estimation. Its simplicity and
robustness to high reverberant environment makes it suitable
for robot audition applications. Although this method is
robust to reverberation, it is sensitive to broadband additive
noise. To reduce the noise contribution, a non-recursive
frequency mask is proposed by Valin et al. [5]. This mask
is computed according to the instantaneous signal-to-noise
ratio (SNR) and has unbounded maximum value, which
makes the result highly dependent on the volume of the
target source signal. For this reason, the recursive mask
was introduced with bounded values and has been used
extensively in the ManyEars system [6], [7]. However, the
system remains sensitive to broadband directional (coherent)
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noise and requires continuous processing even during silence
periods.

To improve robustness to noise, the Multiple Signal
Classification based on Standard Eigenvalue Decomposition
(SEVD-MUSIC) approach, initially used for narrowband
signals [8], has been adapted for broadband sound source
localization [9]. The idea is to decompose the covariance
matrix obtained from the spectral observations at each mi-
crophone in both noise and noisy signal subspaces. The
direction of the sound source is obtained by finding one
or many direction of arrival vectors orthogonal to the noise
subspace. This method is efficient as long as the noise is less
powerful than the signals to be localized. To deal with this
issue, Multiple Signal Classification based on Generalized
Eigenvalue Decomposition (GEVD-MUSIC) is a possible al-
ternative [10]. Although SEVD-MUSIC and GEVD-MUSIC
improve significantly the robustness to noise, they have two
limitations: the performance drops under significant rever-
beration, and the eigenvalue decomposition leads to high
computational load. As a solution, Multiple Signal Classifi-
cation based on Generalized Singular Value Decomposition
(GSVD-MUSIC) is introduced to reduce computational load
[11]. This technique also improves the localization accuracy
as the eigenvectors are mutually orthogonal, but still remains
sensitive to highly reverberant environments.

Specific geometries (e.g., line, circular, and spherical mi-
crophone dispositions) have also been studied to improve
performance and reduce computational load [12], [13], [14].
For mobile robots, these configurations are not ideal due to
the physical constraints introduced by the shape of the robot.

Beamforming based on weighted GCC-PHAT is an ap-
pealing method to perform sound source localization as it is
robust to reverberation, can be used with microphone arrays
with arbitrary shapes, has low-complexity, and is robust
to additive noise when the GCC-PHAT weighting mask is
optimal. This paper introduces a new binary frequency mask
used to enhance the performance of weighted GCC-PHAT
under broadband coherent noise, and that can modulate com-
putational load with voice activity. This paper is organized as
follows. Section II describes the proposed method, followed
by section III with results obtained. Section IV concludes
the paper with ideas for future work.

II. WEIGHTED GCC-PHAT WITH BINARY FREQUENCY
MASK

In this section, we first define a model to pinpoint how
coherent noise influences TDOA estimation results, and then
describe the weighted GCC-PHAT method and the new



binary mask that improves robustness to noise. We then
discuss the computational load introduced by beamforming
with a matrix of microphones and how the proposed method
can improve computational efficiency.

A. Model

For this scenario, it is assumed that the target sound source
is corrupted by coherent and incoherent noises, and is cap-
tured in a reverberant environment. Coherent noise originates
from a specific direction, which implies that its observations
on multiple microphones are correlated. Incoherent noise
is diffuse, and observations on multiple microphones are
uncorrelated. The target sound source is represented by the
signal s[n], and hm[n] is the room impulse response (RIR)
between this source and each microphone m. The variable
n stands for the sample index in time. Coherent noise is
modelized as a noise source c[n] convolved with a RIR
gm[n], while incoherent noise is represented by a single
additive term bm[n]. The captured signal xm[n] at each
microphone m is expressed in (1), with ∗ standing for the
convolution operator.

xm[n] = hm[n] ∗ s[n] + gm[n] ∗ c[n] + bm[n] (1)

The observed signals in the frequency domain are shown
in (2), with ω and j standing for the normalized frequency
in radians and the complex number

√
−1, respectively. This

is an approximation since the target sound source is only
stationnary during intervals of time shorter than the duration
of the RIR.

Xm(ejω) = Hm(ejω)S(ejω) +Gm(ejω)C(ejω) +Bm(ejω)
(2)

The cross-correlation between the signals of two micro-
phones (p 6= q) in (3) carries information about the position
of the target sound source.

E{Xp(e
jω)Xq(e

jω)∗} = Hp(e
jω)Hq(e

jω)∗|S(ejω)|2+
Gp(e

jω)Gq(e
jω)∗|C(ejω)|2

(3)
The term E{...} stands for the expected value operator.

While the incoherent noise term E{Bp(ejω)Bq(e
jω)∗} van-

ishes to zero for p 6= q, the coherent noise is preserved and
may overshadow the target sound source term if the power of
the coherent noise |C(ejω)|2 is greater than the target sound
source power |S(ejω)|2. The coherent noise may generate a
persistent TDOA value that is mistaken as the target source
TDOA value.

B. Weighted GCC-PHAT

TDOA estimation is performed here with a weighted
GCC-PHAT, which uses a short-time Fourier transform
(STFT). The STFT is computed using a Fast Fourier Trans-
form (FFT) for each frame of N samples, as given by (4).
A Hann window w[n] is used and the frames are spaced by
a hop size of ∆N samples. The variables l and k stand for
the frame and the frequency bin indexes, respectively.

X l
m[k] =

N−1∑
n=0

w[n]xm[l∆N + n]e−j2πkn/N (4)

The weighted GCC-PHAT is expressed in (5). The vari-
ables X l

p[k] and X l
q[k] stand for the STFT coefficients of

channels p and q, respectively. The masks ζlp[k] and ζlq[k]
emphasize on the target frequency bins to reduce noise
contribution. The variable ε is added to avoid overflow when
the expression |X l

p[k]||X l
q[k]| goes to zero. The operator

(...)∗ stands for the complex conjugate. The weighted GCC-
PHAT is efficiently computed with an Inverse Fast Fourier
Transform (IFFT).

Rlp,q[n] =
1

N

N−1∑
k=0

ζlp[k]X l
p[k]ζlq[k]X l

q[k]∗

|X l
p[k]||X l

q[k]|+ ε
ej2πkn/N (5)

The GCC-PHAT method is efficient against reverberation
as long as the target sound source is broadband and domi-
nates most frequency bins. The frequency masks ζlp[k] and
ζlq[k] are designed to enhance these bins. The unwrapped
estimated TDOA value τ̂ lp,q corresponds to the sample index
n with the maximum value of the weighted GCC-PHAT
result, as expressed by (6).

τ̂ lp,q = arg max
n

(
Rlp,q[n]

)
(6)

The variable τ̂ lp,q lies in the range [0, N−1]. It is more con-
venient to express TDOA as a wrapped value that lies within
the range [−N/2, (N/2 − 1)], and the estimated TDOA
is therefore obtained by (7). The expression (...) mod (...)
stands for the modulo operation.

τ lp,q =

{(
τ̂ lp,q +

N

2

)
mod N

}
− N

2
(7)

The corresponding energy is obtained by (8). Equation (9)
shows that energy is used to discriminate true detection when
it is greater or equal to the threshold E0 (el = 1), and false
detection (el = 0) otherwise.

Elp,q = Rlp,q[τ̂
l
p,q] (8)

el(E0) =

{
0 Elp,q < E0

1 Elp,q ≥ E0

(9)

Two dominant TDOA values are observed when a target
source is corrupted by broadband coherent noise. We would
like to extract the target source TDOA (τt) and ignore the
coherent noise TDOA (τc). A TDOA τ lp,q is assigned to
the target source (tl = 1) when the absolute value of the
difference with τt is less or equal to a constant ∆τ , as given
by (10). Equation (11) shows that the TDOA τ lp,q is classified
as a coherent noise TDOA (cl = 1) in the same way.

tl =

{
0 |τ lp,q − τt| > ∆τ

1 |τ lp,q − τt| ≤ ∆τ
(10)



Fig. 1: τ lp,q distribution for a target source under broadband
coherent noise.

cl =

{
0 |τ lp,q − τc| > ∆τ

1 |τ lp,q − τc| ≤ ∆τ
(11)

The objective here is to maximize T , the sum of tl

introduced in (12), while minimizing C, the sum of cl

expressed by (13). These sums correspond to the areas
under the curve C and T shown in Fig. 1. To measure the
capacity of the system to discriminate target source TDOA
values from coherent noise TDOA values, the objective is to
maximize the ratio rclassification given by (14).

T (E0) =

L−1∑
l=0

el(E0)tl (12)

C(E0) =

L−1∑
l=0

el(E0)cl (13)

rclassification(E0) =
T (E0)

T (E0) + C(E0)
(14)

It is possible to bring the latter ratio to 1 by keeping only
the few TDOA values with the highest energy. Although the
classification is accurate, the ratio of TDOA values used over
the total number of frames is low, and this makes source
localization difficult over time. We therefore introduce in (15)
a second metric, rdetection, which is the ratio of T (E0) over
the total number of frames L.

rdetection(E0) =
T (E0)

L
(15)

C. Masks

Valin et al. [6] use a soft mask which values range from 0
to 1 according to the estimated SNR. The expression ξlm[k]
is an estimate of the a priori SNR at the mth microphone,
obtained with the method proposed by Ephraim and Malah
[15]. The expression σ2

m[k] stands for the stationary noise
estimate obtained with the Minima-Controlled Recursive
Average (MCRA) method [16]. The soft mask (ζsoft)

l
m[k]

and the a priori SNR are computed recursively using (16)
and (17). The parameter αD stands for the adaptation rate.

Fig. 2: Mask value according to signal-to-noise ratio.

(ζsoft)
l
m[k] =

ξlm[k]

ξlm[k] + 1
(16)

ξlm[k] =
(1− αD)(ζsoft)

l−1
m [k]2|X l−1

m [k]|2 + αD|X l
m[k]|2

σ2
m[k]

(17)
With (ζsoft)

l
m[k], broadband coherent noise may leak

from each bin if the mask value is nonzero, and generate
an undesired dominant peak in the TDOA estimation result.
To solve this issue, we propose a new mask that behaves as
a binary mask, which we call hard mask (ζhard)

l
m[k], that

takes only discrete values of 0 or 1. Each (ζhard)
l
m[k] is

set to 1 when the SNR 10 log10

(
|X l

m[k]|2/σ2
m[k]

)
exceeds

the threshold 10 log10 δ, and to 0 otherwise, as expressed by
(18).

(ζhard)
l
m[k] =


0 10 log10

(
|X l

m[k]|2

σ2
m[k]

)
≤ 10 log10 δ

1 10 log10

(
|X l

m[k]|2

σ2
m[k]

)
> 10 log10 δ

(18)
The mask values are plotted in Fig. 2 as a function of the

estimated SNR. This figure illustrates how the hard mask
entirely removes undesirable noise below the given threshold
10 log10 δ (in dB).

D. Computation Load

It is also relevant to consider the computation load in-
troduced by the TDOA estimation process for a matrix of
microphones. For M microphones, there are M(M − 1)/2
pairs, and the same number of GCC-PHAT computations.
At each frame, M FFTs and M(M − 1)/2 IFFTs are com-
puted. Assuming both transforms involve the same amount
of computer cycles, the computation load corresponds to
M +M(M − 1)/2 FFTs, which simplifies to (M2 +M)/2
FFTs, and a complexity of O(M2). As the number of
microphones in the matrix increases, the complexity becomes
significant and this eventually overloads the robot onboard
processor. The SNR at each microphone may vary according



TABLE I: Positions for the simulations

Emitter / Receiver x (m) y (m) z (m)
Microphone 1 -0.30 -0.30 +0.50
Microphone 2 -0.20 -0.20 +0.25
Speech source +1.00 +0.50 +0.25
Noise source -1.00 -0.25 +0.50

to the matrix configuration and the source position, and
the microphones with noisy signals may be neglected in
order to reduce the amount of computations. Moreover,
during silence periods, the TDOA estimation process may be
paused to decrease computational load and free computing
resources for other purposes. As mentioned in Section II-B,
the weighted GCC-PHAT method is efficient in a reverberant
environment as long as the target sound source is broadband
and dominates most frequency bins. Therefore, a minimum
number of bins must be excited by the target source to obtain
a relevant result from the weighted GCC-PHAT transform.
The number of significant bins (θlm) is obtained from the
hard mask according to (19).

θlm =

N/2∑
k=0

(ζhard)
l
m[k] (19)

Equation (20), which now replaces (8) when the mask
ζhard is used, shows that the GCC-PHAT only has to be
computed for the pair of microphones p and q when θlm is
equal or greater to the threshold θmin. When θlm is smaller,
the system does not compute the GCC-PHAT with (5), and
discards the TDOA by setting the energy level to 0.

Elp,q =

{
Rlp,q[τ̂

l
p,q] θlp ≥ θmin, θlq ≥ θmin

0 otherwise
(20)

III. RESULTS

First, we validated the proposed method with simulations
that cover a wide range of reverberation levels and SNRs, to
then conduct experiments on a mobile robot.

1) Simulations: We tested the weighted GCC-PHAT sys-
tem with different masks to characterize the performances
of each mask. The RIRs for reverberation time parameters
(RT60) of 0, 250, 500, 750, and 1000 msec are generated
for a room of dimensions 10 m × 6 m × 3 m with the
Allen and Berkley image method [17]. Two microphones
capture the simulated signals, and their positions are given
in Table I. The target source comes from male and female
speech segments separated by silence periods of 1 sec, and
convolved with the associated RIRs. A white gaussian noise
is generated and convolved with the corresponding RIRs to
simulate the directional (coherent) noise. The positions of
the target and noise sources are given in Table I. The z
axis points to the ceiling of the room and the origin of this
Cartesian system is positioned in the center of the room.

Parameters used in the simulations are given in Table
II. The adaptation rate αD used to compute ζsoft matches
the value proposed in [6]. The threshold δ introduced with

TABLE II: Parameters

Parameters fs ∆N N ε αD δ

Values 48000 512 1024 1E-20 0.1 5.0

(a) E0 = 0.001

(b) E0 = 0.019

(c) E0 = 0.039

Fig. 3: τ lp,q distribution according to E0 with ζsoft.

ζhard needs to be large enough to discriminate between noise
and the target sound source, and small enough to include a
minimum number of bins excited by the target sound source.
The high sample rate (fs) allows the acquisition of speech
high frequency components. N is the same as in [6] and the
hop size ∆N ensures an overlap of 50%. The parameter
ε prevents overflow and is small enough to preserve the
precision of (5).

We present the detailed results of a specific case (when
RT60 = 500 msec, SNR = 10 dB and θmin = 0) to give
some insights about the TDOA distributions and to illustrate
how performance is measured. Figure 3 shows the histograms
of τ lp,q for TDOA values that satisfy condition in (9) for
multiple values of E0, when soft masks are used. In Fig.
3a and 3b, we observe that the distribution of τ lp,q peaks
at τc, which shows that the coherent noise term dominates
significantly. As the energy level E0 increases in Fig. 3c, the
undesired peak vanishes and τt then becomes the dominant
peak.

Figure 4 shows the histograms of τ lp,q for multiple values
of E0, when hard masks are used. Figures 4a, 4b and 4c
show how τt dominates in all cases. The assignations tl and
cl are computed for each frame with ∆τ = 4 as given by
(10) and (11), and the sums C and T are then obtained using
(12) and (13). Figure 5 shows the ratio rclassification for the
masks ζsoft (blue) and ζhard (red) as the energy level E0

increases. The ratio rdetection is shown for the masks ζsoft
(green) and ζhard (black). As the energy level E0 increases,
the ratio rclassification in (14) increases to reach 1, and the
ratio (15) decreases to reach 0.



(a) E0 = 0.001

(b) E0 = 0.019

(c) E0 = 0.039

Fig. 4: τ lp,q distribution according to E0 with ζhard.

To evaluate performance, we define u according to (21) by
being equal to rdetection when rclassification reaches 95%,
which is close to the ideal 100%, while still providing a
significant value for rdetection. The larger the value of u, the
more robust the method is to broadband coherent noise. For
the computational load, (22) evaluates the ratio of frames that
are processed (zl = 1) over the total number of frames L. A
frame is processed with mask ζhard only when the condition
in (23) is satisfied, while all frames are processed with mask
ζsoft. When all frames are processed, the computational load
is at 100%.

u = rdetection(E0) when rclassification(E0) = 0.95 (21)

computational load =
1

L

L−1∑
l=0

zl (22)

zl =

{
1 θlp ≥ θmin, θlq ≥ θmin
0 otherwise

(23)

Figure 5 shows the results obtained. The values of u with
the masks ζsoft and ζhard are 2.8%, and 13.1%, respectively.

Performance for a wide range of noise and reverberation
levels is also investigated. Table III presents values of u when
the masks ζsoft and ζhard are used. The parameter θmin
takes different values to assess its impact on performance
and computation load (shown in parenthesis). The value of
u always improves for ζhard with θmin = 0 when compared
to ζsoft (in the best case, the gain in u reaches 16.1% for
RT60 = 0, SNR = 0 dB). It is also interesting to note that
ζhard with θmin = 10, when compared to ζsoft, provides
superior performance for u and reduces the computational
load down to 23% in the best case.

Fig. 5: TDOA estimation for a simulation with RT60 = 500
msec and SNR = 10 dB: rclassification as a function of E0

for ζsoft (blue) and ζhard (red), and rdetection as a function
of E0 for ζsoft (green) and ζhard (black)

Fig. 6: TDOA estimation on a mobile robot: rclassification
as a function of E0 for ζsoft (blue) and ζhard (red), and
rdetection as a function of E0 for ζsoft (green) and ζhard
(black)

2) Mobile Robot: A robot equiped with an 8-microphone
array is used to validate performance of the approach in
a real-life environment. For this experiment, only the two
microphones fixed on the front of the robot torso are used to
measure performance. A male speaker speaks at 2 meters on
one side of the robot and a loudspeaker streams a stationary
white noise on the other side. The reverberation level in the
room is measured to be RT60 = 800 msec, and the SNR is
8.1 dB for the microphone on the male speaker side, and 7.3
dB for the second microphone close to the loudspeaker. The
rdetection and rclassification ratios are shown in Fig. 6 for
masks ζsoft and ζhard. u is equal to 13.4% and 17.1% for
the ζsoft and ζhard, respectively. The variable θmin is set to
5 and the computational load is estimated to be at 60%. This
suggests that the proposed mask is more robust to coherent
broadband noise, and reduces computational load.



TABLE III: Values of u and computational load (in parenthesis) with masks ζsoft and ζhard in relation to θmin

RT60 SNR
ζsoft

ζhard
(msec) (dB) θmin = 0 θmin = 10 θmin = 20 θmin = 30 θmin = 40

0

20 47.3% (100%) 54.5% (100%) 53.3% (56%) 48.3% (49%) 40.3% (40%) 32.0% (32%)
15 39.1% (100%) 49.6% (100%) 47.8% (51%) 39.3% (40%) 28.4% (28%) 19.2% (19%)
10 29.5% (100%) 43.0% (100%) 40.2% (44%) 28.1% (28%) 16.2% (16%) 8.8% (9%)
5 19.6% (100%) 35.5% (100%) 30.8% (35%) 16.6% (17%) 7.0% (7%) 2.8% (3%)
0 10.7% (100%) 26.8% (100%) 20.0% (23%) 7.2% (7%) 1.8% (2%) 0.4% (0%)

250

20 36.2% (100%) 46.3% (100%) 46.0% (62%) 44.3% (54%) 39.3% (45%) 32.6% (36%)
15 26.8% (100%) 40.6% (100%) 40.1% (56%) 36.0% (44%) 27.9% (31%) 19.6% (21%)
10 17.5% (100%) 33.5% (100%) 32.5% (48%) 25.5% (30%) 15.7% (17%) 9.0% (10%)
5 9.4% (100%) 25.8% (100%) 23.9% (36%) 14.5% (17%) 6.5% (7%) 2.7% (3%)
0 4.3% (100%) 17.6% (100%) 14.5% (23%) 6.0% (7%) 1.6% (2%) 0.4% (0%)

500

20 13.6% (100%) 24.3% (100%) 24.3% (66%) 24.3% (62%) 24.0% (54%) 22.2% (45%)
15 7.3% (100%) 18.6% (100%) 18.6% (63%) 18.6% (53%) 17.2% (40%) 14.1% (28%)
10 2.8% (100%) 13.1% (100%) 13.1% (56%) 13.0% (38%) 9.9% (22%) 6.7% (12%)
5 0.8% (100%) 9.0% (100%) 9.0% (43%) 8.2% (21%) 4.4% (9%) 1.9% (3%)
0 0.2% (100%) 5.2% (100%) 5.2% (26%) 3.5% (8%) 1.0% (2%) 0.2% (0%)

750

20 4.5% (100%) 9.3% (100%) 9.3% (68%) 9.3% (64%) 9.3% (59%) 9.2% (50%)
15 1.6% (100%) 5.9% (100%) 5.9% (65%) 5.9% (57%) 5.9% (44%) 5.8% (32%)
10 0.4% (100%) 3.4% (100%) 3.4% (59%) 3.4% (42%) 2.9% (25%) 2.5% (14%)
5 0.0% (100%) 2.1% (100%) 2.1% (47%) 2.1% (23%) 1.5% (10%) 0.7% (4%)
0 0.0% (100%) 1.2% (100%) 1.2% (29%) 1.1% (9%) 0.4% (2%) 0.0% (0%)

1000

20 2.1% (100%) 4.3% (100%) 4.3% (69%) 4.3% (66%) 4.3% (60%) 4.3% (52%)
15 0.7% (100%) 2.1% (100%) 2.1% (66%) 2.1% (59%) 2.1% (47%) 2.1% (34%)
10 0.2% (100%) 1.0% (100%) 1.0% (61%) 1.0% (45%) 1.0% (28%) 1.0% (16%)
5 0.0% (100%) 0.2% (100%) 0.2% (49%) 0.2% (25%) 0.2% (10%) 0.1% (4%)
0 0.0% (100%) 0.3% (100%) 0.3% (30%) 0.3% (9%) 0.2% (2%) 0.0% (0%)

IV. CONCLUSION

This paper presents a TDOA estimation method based
on the weighted GCC-PHAT that is robust to coherent
broadband noise. The approach is based on a new hard mask
that improves noise robustness and reduces the computational
load of the system. In future work, we plan to integrate the
use of this TDOA estimation method with a sound source
localization system such as the one proposed in ManyEars.
We also plan to have the parameters automatically adapt to
the environment to find optimal localization performance in
diversified conditions.
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