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tentional Selection and Configuration of

Behaviour-Producing Modules 
1

François Michaud
Université de Sherbrooke 2

Over the years, intelligence has been the subject of studies by many
different fields, contributing to reveal some of its mysteries. Computa-
tional architectures try to exploit in various ways these aspects for de-
signing artificial systems. The biggest challenge is to integrate more
and more properties and principles associated with intelligence, com-
bining their advantages to minimise their limitations. With this objec-
tive in mind, we propose a computational architecture that tries to
synthesise concepts about intelligence, while making sure that the un-
derlying principles of these concepts, such as emergence, are pre-
served. The architecture is based on intentional selection and configu-
ration of behaviour-producing modules. Behaviour-producing mod-
ules are used as basic control components that are selected and modi-
fied dynamically according to the intentions of the system. These in-
tentions are influenced by the situation perceived, the need to accom-
plish specific goals over time, and knowledge innate or acquired about
the world. Motivational and emotional variables are used to monitor
the goals and the overall states of the system. The EMIB architecture is
applied in designing intelligent autonomous mobile robots, as illus-
trated in the three experimental cases presented in this paper.
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Introduction

Intelligence can be addressed from various perspectives, ranging from the
manifestations of intelligent capabilities to the underlying mechanisms used
to generate them. Artificial intelligence, control, psychology, ethology, lin-
guistics, biology, neuroscience and many other research fields try to gather
insights on the principles, methodologies and concepts associated with in-
telligence. Research in these fields gives rise to theories and working princi-
ples that are translated into computational architectures, identifying the
fundamental building blocks to explain intelligent decision-making proc-
esses or to reproduce them on artificial systems (also called agents).

Reviewing all of the particularities of computational architectures used in
artificial intelligence and robotics is outside the scope of this paper (Arkin
(1998) and Murphy (2000) present excellent overviews). However, it is pos-
sible to outline three general decomposition principles currently found in
architectural methodologies:
• Hierarchical decomposition: these architectures are organised in a hierar-

chy of modules layered according to the Principle of Increasing Precision
with Decreasing Intelligence (Saridis, 1983). Saridis, from the field of intel-
ligent control, first proposed a three-level architecture (i.e., Execution
Level, Coordination Level and Organisation Level), each level interact-
ing only with the subsequent one. The intended applications are for ma-
chines operating in well-defined operating conditions.

•  Functional decomposition: these architectures follow a functional de-
composition of intelligent processes, by having for instance a sensory
processing module, a modelling module, a planning module, a value
judgement module and an execution module, as proposed by Albus
(1991). Each module exchanges information between each other based
on their functionality. Similar strategies can be found in multi-agent re-
search (Werner, 1992). Such specialised modules allow complex opera-
tions to be performed (for instance, modelling the world allows an agent
to plan ahead and anticipate actions to take over time), but implies
strong interdependencies between the decision-making modules.

• Behaviour-based decomposition: the idea exploited in these architectures
is to have multiple concurrent task-achieving processes, deriving actions
from sensed conditions or internal states, and to fuse these actions using
an arbitration scheme in order to determine the output of the system. By
having such modules interact directly with the environment and with-
out having dependencies between each other, it is said that a functional-
ity emerges from these interactions that are neither a property of the
agent or the environment in isolation, but rather a result of the interplay
between them (Arkin, 1998). Subsumption arbitration (Brooks, 1986) and
Motor Schemas (Arkin, 1989) are examples of such architectures. The
approach has shown to be especially effective for mobile robots, allow-
ing them to adapt to the dynamics of real-world environments without
operating upon abstract representations of reality (Brooks, 1991).

Each of these paradigms offers interesting but different insights about intel-
ligence, that are incomplete rather than being incorrect. Many recent com-
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putational architectures try to combine the advantages of these paradigms,
especially the responsiveness, robustness and flexibility of behaviour-based
approach with the use of abstract representational knowledge for reasoning
and planning about the world (Arkin, 1998) or for managing multiple con-
flicting goals. For instance, AuRA uses a planner on top of behavioural
modules (Arkin, 1998; Murphy, 2001), or 3T uses behavioural modules in the
execution layer of a three-level hierarchical architecture (Bonasso, Firby, Gat,
Kortenkamp, Miller et al., 1995). The basic principle for making the coupling
is to dynamically reconfigure the behavioural modules according to rea-
soning done based on available world knowledge (Arkin, 1998).

However, in designing these hybrid architectures, it is essential that the
fundamental aspects of each of their decomposition principles be preserved.
One difficulty is to conserve and exploit emergent properties at all levels of
decision, and not only at the behavioural level. We use the term emergence
here to refer to the holistic capability arising from a collection of components
interacting through the interactions the agent has with its environment (and
not with themselves within the agent) (Arkin, 1998). Combining abstract
reasoning processes with behavioural modules, must still allow emergence
to take place at the behavioural level, and should also be present at the
higher decision levels. For instance, by only using one module (like a plan-
ner) to reconfigure behavioural modules over time, a strong dependency is
created on the accuracy and the adequacy of the higher decision module.
However, using concurrent processes that monitor different conditions in-
dependently from one another to reconfigure behavioural modules, emer-
gence can arise at higher abstraction levels too. This property is especially
important for agents that have to plan, reason and act in unpredictable and
changing environments, like in real world settings. Another use of emer-
gence would be in deriving knowledge about the world. Most deliberative
approaches derive knowledge for reasoning about the world from sensor
inputs and actions taken by the agent. This results in high state space repre-
sentation of the world, and does not take into consideration the context in
which these sensations/actions are taken. Since behavioural modules are the
low-level control blocks and that their use are driven by what emerges from
the interactions with the environment, they can also serve as an abstract
representation of what is experienced in the world. The purpose associated
with each behavioural module can then be exploited for reasoning, ground-
ing intentions to what the agent is experiencing in the world.

Since 1995, we have been experimenting with a three-level computational
architecture that attempts to combine concepts like reactivity, deliberation
and motivation, while preserving emergence at all abstract decision levels.
The architecture named EMIB (for Emotion and Motivation for Intentional
selection and configuration of Behaviour-producing modules) is based on
the idea of intentionally selecting and configuring behaviour-producing
modules. Behaviour-producing modules are used as basic control compo-
nents that are selected and modified according to the intentions (as derived
by the higher decision levels) of the agent. These intentions are influenced
by the situation perceived, the need to accomplish specific goals over time,
and knowledge innate or acquired about the world. Motivational and emo-
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tional variables are used in the architecture to monitor the goals and the
overall states of the agent. One key influence in the architecture is the ability
to observe how behavioural modules are used over time, gaining insights on
what emerges out of the interactions the agent has with its environment.

This paper first explains the rationale behind the design choices made for
the EMIB computational architecture, and then illustrates its use in three
experimental cases. The objective is to design an architecture that is applica-
tion- and implementation-independent, and that can exploit the appropriate
decision-making mechanisms according to the agent’s capabilities and pur-
poses. Note that the architecture is not designed to model human cognitive
processes, but can be inspired from them.

EMIB computational architecture

The architecture, shown in Figure 1, is made of three levels: the Behavioural
Level, the Recommendation Level and the Motivational Level. The Behav-
ioural Level of the architecture is made of behaviour-producing modules,
connecting sensory information to actions. The Recommendation Level is
responsible for changing the selection of behaviours or to reconfigure them
to make the system behave appropriately according to its goals and the
situations it encounters in the world. The Motivational Level monitors the
goals and the overall states of the agent.
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 Figure 1: EMIB computational architecture.
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Behavioural Level

Behaviour-producing modules allow the agent to respond in particular ways
to situations encountered in the environment. These modules all run in par-
allel and their resulting commands are combined using an arbitration
mechanism to generate the control actions of the robot. Different method-
ologies can be used to implement the behaviour-producing modules and the
arbitration mechanism (like Subsumption (Brooks, 1986; Mataric, 1992),
Motor schemas (Arkin, 1998), Fuzzy Logic (Saffiotti, 1997), etc.). Emergent
computing occurs here by having modules issuing actions simultaneously
on the same actuator, but based on different sensed or internal conditions.

Recommendation Level

To still allow emergent computation, the Recommendation Level uses three
types of modules that formulate, concurrently, behavioural recommenda-
tions based on different monitoring conditions. The Implicit module recom-
mends behaviour-producing modules by default or driven by conditions
derived from sensory inputs. The Egoistical module selects behavioural
modules according to the agent’s ‘needs’ or goals, which are influenced by
the Motives module described in the next subsection. In this module, goals
can be prioritised for instance according to Maslow’s Hierarchy of Needs
Theory (Maslow, 1954), from physiological, security, to social and accom-
plishment needs. The Rational module is for behavioural recommendations
based on innate or acquired knowledge about the world, to plan or to pre-
pare the use of behaviour-producing modules exploiting such knowledge. In
the case of a mobile robot, this can involve navigation using a map (learned
or known a priori), communication with other agents (artificial or human),
or any methods used for reasoning that can be useful for the agent. Note that
knowledge about the world can also involve internal states of the agents,
like motives, behavioural recommendations or data provided by the behav-
iour-producing modules (like behaviours used to recognise specific objects
in the world (Arkin, 1998)). Rational recommendations can also involve re-
configuration of behaviour-producing modules or generation of virtual in-
puts, via the configuration parameters link.

The use of three types of recommendation modules has been influenced
by the hypothesis that human behaviour is subject to three influences: the
environment, the needs of the individual and its knowledge (Dolan & Lam-
oureux, 1990). The importance of each of these influences explains why
manifested behaviour can be more reactive, egoistic or rational.

These three modules can be compared to three types of ‘behaviour-
recommending’ modules responsible for making decisions (or recommen-
dations) about which behaviour-producing modules must be activated or
inhibited, according to what the robot wants to do and what situations it is
experiencing in the world. In order to do this by concurrent processes, a
common representation for making these recommendations is necessary. A
recommendation for a behaviour-producing module can be of two types: a
desirability (d) value (ranging from 0 to 100%), requesting that a behaviour-
producing module be activated; an undesirability (u) value (ranging from 0 to
100%) indicating that a behaviour-producing module must not be activated.
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Each recommendation module can derive desirability and undesirability
values for each behaviour-producing module. Using these parameters, the
Selection module determines the activation of behaviour-producing modules,
i.e., by deriving the Behaviour.Activation parameters. Different methodologies
can be used to implement this module, but the underlying idea here is to
activate behavioural modules that are more desirable than undesirable. This
is inspired from the hedonic axiom which indicates that the organisms direct
their behaviours to minimise aversions and maximise desirable outcomes
(Beck, 1983). The d/u parameters make it possible to prevent possible con-
flicts when recommending behaviour-producing modules, which may occur
from the parallel and independent evaluation of these three types of recom-
mendation modules, or from different rules in one recommendation module.
With Subsumption arbitration for instance, it would allow a behaviour-
producing module of lower priority to get exploited by inhibiting the higher
priority modules.

Motivational Level

When operating in unpredictable and partially observable environments, an
autonomous agent must examine the evolution of its general states, and try
to capture what emerges from the interaction dynamics with its environ-
ment. Temporal integration of different types of observations is an impor-
tant concept for doing so (McCarthy, 1995; Smithers, 1994). Works on moti-
vational systems (Maes, 1991; Blumberg, Todd & Maes, 1996; Breazeal, 1998)
have shown that a good balance between planning and reactivity for goal-
management can be achieved using internal variables that get activated or
inhibited by different factors. In that regard, motivations (McFarland &
Bösser, 1993; Maes, 1991; Parker, 1998) and emotions (Simon 1967; Ortony,
Clore & Collins, 1988; Oatley & Johnson-Laird, 1987; Albus, 1991; Breazeal,
1998) are concepts that are gaining importance in the design of autonomous
agents. They reveal to be useful in making an efficient connection between
adapting to the contingencies of the world and making the agent accomplish
its goals. That explains why the third level of the architecture, the Motiva-
tion Level, is made of the Motives module and the Emotions module.
Motives module. The term ‘motive’ refers to something that prompts an
agent to act in a certain way. Similarly, the Motives module is used to repre-
sent the agent's goals, making it decide how to behave in the world. Motives
can be influenced by the environment (from sensed conditions), the inten-
tions of the robot (derived from behavioural recommendations), knowledge
about the world (managed by the Rational module) and by observing the
effective use of the behaviour-producing modules. Motives are used to in-
fluence the recommendations of behaviour-producing modules by the Egois-
tical module, and can also characterise special states in the Rational module
(for example, motives experienced at particular locations can be memorised
for future reference).

Even though different representations can be used to implement the Mo-
tives module, we have been experimenting with one that tries to integrate
temporal reasoning with a symbolic representation. Each motive is associ-
ated with a particular goal (that can be accomplished using one or more



EMIB – Computational Architecture Based on … 7

behaviour-producing modules) of the agent. As shown in Figure 2, a motive
m is characterised by an energy level E and a mapping function M that are
used to determine its activation level A according to the formula: Am=M(Em).
The energy level and the activation level of a motive range between 0 and
100%. The energy level can be influenced by various factors: sensory inputs,
exploitation of behaviour-producing modules associated with the motive,
activation of other motives, Rational influences, emotions, and time. The
energy level is computed by adding the influence of n factors affecting the
motive, weighted by w. This can also be interpreted as having different in-
crement or decrement values w associated with particular events j. For fac-
tors that occur for long period of time and that must not influence the mo-
tive for the entire period, a habituation function can be used (Staddon, 1993)
to modulate its influence. The habituation strength is used to modulate the
weighted input that influences the energy level of the motive. With a higher
habituation rate, the same weighted input has less influence over a consecu-
tive period of time. Finally, mapping from E  to A can be determined ac-
cording to different methods: directly transposed (E=A); determined using
thresholds (if E > threshold then A = x, …); or triggered according to the en-
ergy level of other motives. The activation level of a motive can then influ-
ence other motives or be used by the other modules of the architecture.
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Figure 2: Schematic representation of a motive.

Emotions module. The concept of artificial emotion is increasingly used in
designing autonomous robotic agents (Velásquez, 1998; Breazeal, 1998). In
fact, psychological evidences suggest that emotion can serve three important
roles (Michaud, Pirjanian, Audet & Létourneau, 2000).
—  Emotion to adapt to limitations. Emotion plays a role in determining

control precedence between different behavioural modes, coordinating
plans and multiple goals to adapt to the contingencies of the world (un-
der constraints of time and other limited resources), especially in imper-
fectly predictable environments (Frijda, 1987; Oatley & Johnson-Laird,
1987; Plutchik, 1980).

—  Emotion for managing social behaviour. Plutchik (1980) interestingly
points out that emotions are in direct association with four universal
problems of adaptation, which are: hierarchy (Anger/Fear), territoriality
(Exploration/Surprise), identity (Acceptance/Rejection) and temporality (Joy /



8 EMIB – Computational Architecture Based on …

Sadness). Plutchik's theory also suggests the possibility that emotions “are
functional adaptations for establishing a kind of social equilibrium. This would
imply that emotions enter into every social transaction and help to establish a
balance of opposing forces. These balances are always temporary and frequently
change as we move through life from one conflict to another” (Plutchik, 1980).

—  Emotion for interpersonal communication. In order for emotions to
regulate behaviour in social interaction, emotion also has a communica-
tive role. Ethologists believe that emotional expression has a communi-
cative function and acts as releasers for the coordination of social behav-
iour. Emotional expression promotes individual isolation (as it may be
necessary in defending something) or to promote group action (as differ-
ent social circumstances might require). The role of expression in emotion
can be seen from three different views: the situation is evaluated by
emotion that lead to an expression; expression may be a reaction to the
situation that also produces the emotion; the expression may affect the
emotion rather than the other way around (Mook, 1987). Emotion then
serves a dual purpose: it is a communication act and it is a sensed state.

From an engineering point of view, autonomous robots would surely benefit
from having mechanisms that play a similar role. Different mechanisms for
implementing artificial emotions can surely be designed according to prop-
erties associated with the decision-making approach used to control the
agent. One possibility is to use internal variables that have the same pur-
poses as emotion. However, an internal variable can be named as an emo-
tion, without playing all of the three roles associated with emotion. To avoid
potential misuse of the term ‘emotion’, our goal is to derive an emotional
model that is generic and task-independent, i.e., we would like the mecha-
nism that derives emotional states to be the same whatever the goals pur-
sued by the robot.

The model of emotion we are studying differs from other emotional rep-
resentation in that the behaviour of the system is not oriented toward satis-
fying particular emotional states like in Breazeal’s work (Breazeal, 1998).
Artificial emotions are used to monitor how goals get satisfied or not, in a
way similar to the concept of B-Brain introduced by Minsky (2002). Our
model is two-dimensional and bipolar, with four emotions: Joy/Sadness and
Anger/Fear, each defined from 0 to 100%. Joy and Anger are positive emo-
tions, while Sadness and Fear and negative emotions. In our model, the en-
ergy level of motives is used as an abstraction of the progression toward the
accomplishment of the goals associated with activated motives: Joy monitors
a decrease in the energy level, indicating the accomplishment of the goal
associated with the motive; Sadness monitors an increase in the energy level,
indicating difficult progress in the accomplishment of the goal associated
with the motive; Anger monitors oscillations in the energy level, indicating
difficult progress in the accomplishment of the goal associated with the mo-
tive; and Fear monitors constant energy level, indicating no progress in the
accomplishment of the goal associated with the motive. Monitoring the en-
ergy level of motives makes the approach generic, since the emotions can be
influenced by (an emerge from) different contexts (i.e., goals) according to
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the motives activated and their priority, attributed following the guidelines
of Maslow's Hierarchy of Needs Theory (Maslow, 1954).

As shown in Figure 1, the emotional capability in the EMIB computa-
tional architecture is incorporated as a global background state, allowing
emotions to influence and to be influenced by all of the architecture's mod-
ules. This is related to research conducted by Oatley and Johnson-Laird
(1987) indicating that emotions provide a biological solution to certain
problems of transition between plans in systems with multiple goals and in
unpredictable environments, by maintaining these transitions and by com-
municating them to ourselves and to others. For instance, emotions can be
used to: change some of the parameters of behaviour-producing modules,
adapting the way the agent respond to stimulus or express emotional states;
influence the implicit, egoistic or rational influences of the recommendation
modules, locally in each one or globally by affecting their importance in the
Selection module; associate agent’s states with particular event, memorised
in the Rational module; affect the goals of the agent via its motives.

Behaviour.Exploitation parameters

Behavioural exploitation refers to the observation of the effective use of be-
haviour-producing modules. Behaviour.Exploitation parameters differ from
Behaviour.Activation parameters in the sense that the agent intends to use an
active behaviour-producing module by allowing it to participate to the con-
trol of the agent, and it is said to be exploited only if it is actually used to
control the agent (by reacting to the sensations using the control rules of the
behaviour and going through to the arbitration mechanism at the Behav-
ioural Level). An active behaviour is not exploited when it is not releasing
commands that affect the actions of the agent.

We believe that observing the exploitation of behaviours over time is a
very important source of information about the emerging functionality that
comes from the behaviour-producing modules and the recommendation
modules. This is explained by the fact that behaviour exploitation combines
both a representation of the environment (i.e., the sensory information used
by the behaviour) and of the control policy (since the exploitation of a be-
haviour depends on its purpose, behaviour arbitration mechanism and con-
ditions associated with its activation). Behaviour.Exploitation parameters pro-
vide important feedback about the interactions the agent is having in its
operating environment, interactions that emerge from the computation done
in the three abstraction levels of the architecture. In the EMIB architecture,
such feedback can be used to influence motives or to derive knowledge
about the world as the agent experiences it.

Experimental cases

Since intelligence depends on the sensing, acting and processing capabilities
of the agent, and because of the variety of aspects addressed by the archi-
tecture proposed, the experiments conducted are oriented toward validating
different subsets of the properties of the EMIB architecture. The choice of
EMIB’s decision modules and the mechanisms used by them are done ac-
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cording to the robot's capabilities and purpose. Experiments reported here
were made in a simulated environment for mobile robots (Michaud, La-
chiver & LeDinh, 1996; Michaud, Lachiver & LeDinh, 2001) to study the
properties of the architecture without the influence of emotions, with a mo-
bile robot that has to learn in non-stationary environment from observing
the use of behaviour-producing modules (Michaud & Mataric, 1999), and
with a mobile robot interacting with a human using light signals (Michaud
& Vu, 1999). Detailed results for each of these experimental cases are not
provided in this paper, and more information can be found in the referenced
publications. The current paper reports general observations on the proper-
ties of the EMIB architecture, especially its ability to combine various
mechanisms for intelligent decision-making, while preserving and exploit-
ing emergence in all of its decision-making levels.

Monitoring incorrect behaviour and topological representation

Figure 3 shows an implementation of EMIB to make a simulated robot effi-
ciently reach targets and recharge itself when needed. The robot does not
have any a priori knowledge about the environment, and has limited mem-
ory to acquire information that can be helpful in its task. Fuzzy logic is used
to implement behaviour-producing modules and for recommending them.
This allows the blending of commands and of behavioural recommenda-
tions. The Rational module uses a topological graph to construct an internal
representation of the environment, and the Motives module manages and
monitors the goals of the robot.

Figure 4 presents one result obtained, showing how interactions between
the agent and its environment can be monitored using the B e h av-
iour.Exploitation link and motives. The simulated robot starts from the centre
of the environment and goes directly into the lower right corner. At this
corner, a conflict occurs between the behaviour-producing modules for
avoiding very close obstacle (called Emergency), for moving away from ob-
stacle in front of the robot (called Avoid) and for following the wall (called
Align), and the robot is not able to move away from this location.

However, this situation can be monitored by looking at the exploitation
of these behaviour-producing modules over time (using the Behav-
iour.Exploitation link). In this case, the simultaneous constant exploitation of
Emergency and Avoid (between cycle 10 and 40) is a sign that something is
not working properly for the robot: normally these behaviours should be
used for short periods of time if they are successful in making the robot
avoid a collision. This condition is monitored by a motive called Distress
from which a behaviour to make the robot back up is recommended by the
Egoistical module. In this case, Distress is used to monitor the emergent
situation caused by the unsuccessful use of behavioural modules for avoid-
ing obstacles and following walls. The robot is then able to move away from
the corner and to continue exploring the environment.

Managed by the Rational module, a topological graph is learned and used
by the robot as a representation of the environment. At its lowest level, the
graph is constructed from topological states identified by the Landmark
module. This procedure is similar to the work of Mataric (1992), but using a



EMIB – Computational Architecture Based on … 11

MOTIVES

RATIONAL

Landmark 
Alarm

Backup
Emergency

Avoid
Recharge

Turn 180
Turn90

Target
Align

Spin

topological
state

SELECTIONEGOISTICAL

IMPLICIT
Behaviour.
Exploitation

µ exp

Proximity sensors
Energy level

Rotation
Velocity

Signaling device

Behaviour.
Activation

µ act

Blending of 
actions using 
defuzzification

Construction

Positionning

Planning Recommen- 
dations

Optimization

Bored

Explore Exploit

Confidence Certainty

Fulfillment Deception

Hungry Eat Distress

Speed

turning side

Figure 3: Implementation used for the experiments with a simulated
mobile robot.

different identification behaviour. If activated, this behavioural module ex-
amines sensations coming from the front, the back and the two sides of the
agent. The presence or the absence of obstacles at a certain distance in these
four directions is used to infer one of 16 possible topological states. Based on
these states, nodes are created to represent particular locations in the envi-
ronment. Information can be stored in these nodes, like the number of visits
to the node, the presence of a goal like a target or a charging station, the
occurrence of a motive, etc. Adjacent nodes have links between them, mak-
ing it possible to position the agent in the topological graph and to plan
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paths to go to particular locations. However, since only proximity sensors
are used to construct this graph, optimization is an essential process. Be-
cause the similarities between nodes are evaluated based on a sequence of
similar nodes and not by factors uniquely identifying each possible land-
mark in the environment, the graph can be composed of parallel branches or
multiple nodes for the same site. The agent also has limited memory space,
and so only the useful nodes are to be kept in the graph. A node is consid-
ered useful when it has been visited more than once, it is at the start of a
branch or it is part of a path from a node referring to a charging station (lo-
cated at the lower left corner) toward a node referring to a target (the regions
delimited by circles). Figure 5 shows the topological graph before and after
optimization. After optimization, the graph is reduced by approximately
50%. The paths following the boundaries of the environment are kept with-
out being explicitly specified in the optimization procedure, and thus the
useful paths emerge from the interactions the agent has with the environ-
ment (based on its behavioural capabilities) and its ability to use its topo-
logical representation.
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Figure 4: Example of monitoring incorrect behaviour using Behav-
iour.Exploitation.
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Figure 5: Topological graph before and after optimization.
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Learning from the history of behaviour use

Since behaviour-producing modules are responsible for managing the direct
interactions between the agent and its environment, observing their exploi-
tation can be used to model these interactions. By knowing the purpose of
each of the behaviour-producing modules and by observing their exploita-
tions, the agent can autonomously evaluate and model the type of interac-
tions it is having with its environment. This ability has been validated in the
context of learning an “interaction model” based on the robot's history of
behavioural exploitation, i.e., by representing the sequence of behaviour-
producing modules exploited to characterise the interactions between the
robot and the world. Figure 6 shows the modules of the EMIB architecture
used for these experiments. The objective was to make the robot learn to
change its behaviour selection strategy for foraging pink blocks to a homing
region, in changing environments (static with different environment con-
figurations, or dynamic with multiple robots). Figure 7 illustrates the ex-
perimental set-up. A Rational module is used to learn the interaction model,
while an Implicit module is used to activate searching or homing. Using Sub-
sumption arbitration (i.e., commands issued by the behaviour-producing
modules with the highest priority subsume the ones issued by lower priority
behaviour-producing modules), eight behaviour-producing modules are
used to control the robot, making it able to forage and avoid obstacles. Al-
ternative-behaviours for following the wall, for resting and for wandering
are used according to the strategy learned by the Rational module. Whenever
a behaviour-producing module is exploited, its corresponding symbol is
sent to the Rational module (following the subsuming organisation of the
behaviour-producing modules), generating the sequence of behaviour-
producing modules exploited over time. This sequence is encoded into a tree
representation of the history of behaviour exploitations, constructing one
interaction model for searching blocks and one for going to the home region.

Learning is done in a reinforcement fashion (i.e., by trial-and-error and
without being told exactly what it should do at all times), but without speci-
fying a reward signal based on characteristics about the environment or the
task. Instead, performance is based on a self-referenced method, by using
the amount of time behaviour-producing modules are exploited. Compari-
son between the time spent exploiting behaviour-producing modules associ-
ated with the task (like Searching or Homing) and the time spent exploiting
maintenance behaviours (like Avoidance) is used to derive the evaluation
criterion. This way, behavioural selection strategy is derived from what can
be learn from the experiences of the robot in its environment, without hav-
ing to characterise a priori the operating conditions of the environment. Re-
sults obtained with this approach show that the robot is able to learn unan-
ticipated (like resting in front of a static obstacle to increase the turning an-
gle and locate a pink block placed in the centre of the pen, taking into ac-
count the unforeseen dynamic of the robot’s capabilities) and original (like
yielding when coming close to other agents or following walls when the
centre of the pen is crowded) behavioural selection strategy, in stationary
and non-stationary conditions. By monitoring and modelling how behav-
iour-producing modules are exploited (not just activated but actually used
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based on conditions in the environment) over time, the approach tries to
characterise what emerges from the behaviour of the robot in its environ-
ment.
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Figure 6: Implementation for the learning experiments.

Figure 7: Experimental set-up for the learning experiments.
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Goal-management using motives

An autonomous robot needs a mechanism to manage conflicting goals. Be-
cause of inherent uncertainties for robot operating in unconstrained envi-
ronments and with limited knowledge and abilities, conflict management
and planning between goals should emerge too from the interactions the
robot has with its environment.
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Figure 8: Implementation for the goal-management experiments.

This experimental case involves a human interlocutor interacting with a
mobile robot using a light-signalling device for communication. A light-
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signalling device simply consists of a coloured light that the agent (the robot
or the human interlocutor) can turn on or off according to a coding protocol.
Perception of the signal is done by the robot using a colour-detection vision
system. We chose to experiment with a light-signalling device to understand
the advantages and limitations of this communication method, and how it
could be complementary to standard communication media (like radio
transmission). Visual communication may be limited in range, motion and
bandwidth. However, having the agents relatively close to each other makes
them share the same perceptual space, which allows them to sense or de-
duce information concerning the context of their interaction (like the location
of the interlocutor, objects they perceive, etc.) without having to communi-
cate explicitly such information. This helps establish a shared meaning be-
tween the agents.

In the experiments, the robot had the following goals: 1) Getting out of
trouble (using motive Distress); 2) Wandering (using motive Wandering); 3)
Following walls (using motive Wall-following); 4) Following a moving agent
(using motive Following); 5) Foraging (to search for blocks and bring them to
a specific location, using motive Foraging). The implemented architecture is
shown in Figure 8. Goals 2 to 5 are task-oriented, and the robot can only
accomplish each of them one at a time. Conflict between these goals is man-
aged by activating only the task-oriented motive (Foraging, Wall-following,
Following, or Wandering) with the highest energy level, setting its energy
level to 100% and letting the motive remain active until its energy level
drops to zero. Meanwhile, the activation levels of the other task-oriented
motives are set to 0%. The Rational module is used in these experiments to
interpret the signals communicated using the signalling device.
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Figure 9: Energy levels of motives over time (in sec).
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Figure 9 shows the energy level of task-oriented motives in one trial. The
robot first decides to activate Following, then to activate Foraging (around the
210th sec) and finally Wall-following (around the 320th sec). Since these mo-
tives influences one another (as seen by the loop shown in the Motives mod-
ule of Figure 8), these goals are to be accomplished regularly by the robot
according to previous goals and to particular conditions experienced in the
environment. For example, seeing a pink block will encourage the robot to
start to forage, while no exploitation of the behaviour-producing modules
associated to foraging will decrease the energy level of the motive. If the
robot frequently detects walls, then Wall-following gets energised and even-
tually takes precedence over the others; it remains active for a time propor-
tional to the ability of the robot in following the walls. It will also influence
the energy level of the Following motive.

Requests can also be communicated by a human interlocutor, influencing
the energy level of the associated motive. These requests can be seen in Fig-
ure 9 by a 40% increase in the energy level of a motive, causing it to be acti-
vated longer (as for the Following motive) or to take precedence over another
motive (as it happens with the Foraging motive). Also note that the robot
encountered some difficulties at the end of this trial, as indicated by the en-
ergy level of Distress. When Distress reaches 100%, the robot communicates
its state, hoping to receive some outside help. So, based on this experimental
case, using motives and communication add another important dimension
to emergence, since the robot’s goals can be influenced by the environment,
the experiences of the agent and communicated information.

Conclusion

Being able to model the world, plan, predict events, deliberate from possible
alternatives, learn, adapt to the contingencies of the environment and many
other capabilities are important manifestations of intelligence. Designing an
agent that demonstrates all of them is a complex problem usually addressed
from smaller parts. This paper presents a computational architecture that
tries to reach this objective by integrating modularity principles associated
with hierarchical architectures, functional architectures and behaviour-based
architectures.

The EMIB computational architecture has three-level: behavioural, rec-
ommendation and motivational. It distinguishes itself from other computa-
tion architectures by being able to integrate behavioural decision-making
with reasoning (in a more traditional AI perspective) and also motivation
and emotion. Some similarities exist with the ALLIANCE architecture
(Parker, 1998). However, in ALLIANCE behavioural selection is done only
using a motivational subsystem, and not from multiple sources. The EMIB
architecture integrates more influences for selecting and configuring behav-
iour-producing modules. Albus’ computational architecture (Albus, 1991) is
similar to EMIB by also considering the influence of emotions (in the value
judgement module), but differs in its dependence on a symbolic and central
world model and in its hierarchical decomposition with different planning
scopes (in time and in space, up to 7 levels).
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Without prohibiting the use of symbolic knowledge representation and
world modelling, the EMIB architecture preserves and exploits emergence,
not only at the behavioural level, but also to reason about what the agent is
experiencing in the world. This is achieved at the Behavioural Level by
having concurrent use of behaviour-producing modules, and having them
be selected and configured also by concurrent recommendation modules.
No strong interdependencies exist between the recommendation modules,
and no one has the control over the others. This adds another dimension to
the emergence of functionality associated with behaviour-based approaches,
by having behaviour-producing modules be selected and configured by
independent sources. Using information derived by behaviour-producing
modules is also another useful source of knowledge about the environment,
as generated by the agent’s capabilities in the topological graph experiment.
Finally, looking at how behavioural modules are exploited over time is also
a key factor in making agent more intelligent, as explained in the experi-
ments. Using this information, the architecture also allows to model and to
reason about what emerges from the interactions of the agent in its envi-
ronment, as influenced by its decision and control capabilities. It allows the
decision-making processes of the agent to be more influenced by its own
reality, as defined by its own capabilities and its experiences in the world.
We believe that such capabilities are required for designing autonomous
agents that have to deal with complex, changing, unpredictable and partially
observable operating conditions.

As illustrated in the three experimental cases presented in the paper, dif-
ferent implementation of the EMIB computational architecture is possible,
based on the capabilities required by the agent. The architecture makes no
assumptions on the mechanisms implemented in the decision modules, nor
does it require that all of the decision modules be used in an implementa-
tion. The EMIB decision-making modules can then exploit different kinds of
representations, adhering to the modules’ purpose and the interfaces be-
tween them.

By continuing to follow the organisational principles of the EMIB archi-
tecture in the design of autonomous mobile robots, we hope to gain a better
understanding of the various dimensions related to intelligence (like reac-
tivity, planning, modelling, learning, communicating, interacting, motiva-
tion, emotion and so on) to design increasingly intelligent agents under the
same conceptual framework. Currently, many projects based on the EMIB
architecture are underway. One aims at formation control in complex envi-
ronment and with heterogeneous robots. Another involves prolonged activ-
ity of a group of robots having to survive in an enclosed area by sharing one
charging station while doing a foraging task. These projects can be associ-
ated with some of the universal adaptation problems outlined by Plutchik
(1980), making possible to study the use of artificial emotion in such con-
texts.

Finally, we do not claim that the conceptual framework of the proposed
architecture is the only one to be followed to design intelligent agents: there
are still too many things unknown about intelligence to make such a claim.
Improvements are still required, like having a mechanism that allows to
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dynamically change the priorities between the behaviour-producing mod-
ules. We also need to refine and test our model of artificial emotions. As of
now, we validated the model by using it in our entry to the AAAI 2000 Mo-
bile Robot Challenge (Michaud, Audet, Létourneau, Lussier, Théberge-
Turmel et al., 2001). Our objective was to study how such generic mecha-
nism can benefit the robot in making self-assessment of its situation in the
environment and of the accomplishment of its goals, and used for human-
robot interaction. The principal problem found with the model is the diffi-
culty in adjusting the factors influencing the motives and the artificial emo-
tions, to get an adequate response depending on the goal pursued by the
agent. In future work, we hope to refine the model to significantly simplify
this process, while still ensuring its generic.

Our long-term goal is to continue to integrate intelligent decision-making
capabilities in the EMIB architecture and to analyse the implementation
complexity of the designs and the performance manifested by the agent in
complex environmental settings. We will also continue to study other com-
putation architectures to evaluate interesting mechanisms not considered in
the EMIB architecture and to compare performances using common bench-
mark applications. EMIB computational architecture could then be adapted
and refined according to these findings. Such integration will certainly be
beneficial in designing autonomous mobile robots increasingly more intelli-
gent, capable of sharing their existence with us in real life settings.
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