
www.software20.org

FlowDesigner is a free (GPL/LGPL) data-fl ow 
oriented development environment. It can be 
used to build complex applications by combi-

ning small, reusable building blocks. In some way, it 
has similarities with Simulink and LabView, although 
it is not designed to be a clone of any of them. Flow-
Designer features a GUI that allows rapid application 
development and includes a visual debugger. It is 
written in C++ and features a plug-in mechanism that 
allows new blocks/toolboxes(sets of related blocks) 
to be easily added. FlowDesigner was designed with 
the following goals in mind: ease of use, speed, fl exi-
bility, expandability and modularity. Since it is not an 
interpreted language, it can be quite fast. FlowDesi-
gner followed the same approach as for the C++ lan-
guage which can be summarized by : you don't pay 
for the features you don't use. Although this deve-
lopment environment can be seen as a rapid proto-
typing tool, it can also be used for building real-time 
applications, such as Digital Signal Processing (DSP) 
and Artifi cial Intelligence (AI) applications.

This article focuses on basic concepts useful to 
build small FlowDesigner applications that use the 
Fuzzy Logic and the Artifi cial Neural Network (ANN) 
toolboxes. Some more advanced features, like buil-
ding your own FlowDesigner blocks, data types and 
operators, are also discussed. 

Terminology
This section defi nes the concepts and terms used 
by FlowDesigner. To help understanding those de-
fi nitions, comparisons with Matlab and the C langu-
age shows how FlowDesigner can be related to each 
other.

FlowDesigner: the free data-fl ow 
oriented development environment

Nodes or Blocks
The basic processing unit in FlowDesigner is a No-
de (also called Block). A Node is in all ways similar 
to a C or Matlab function as it takes some input data, 
performs some operations and outputs data.

Node terminals (inputs/outputs) 
Each Node have inputs and outputs used to cre-
ate interconnections with other Nodes. The inputs 
are equivalent to arguments in a Matlab/C function, 
which are variables of specifi c types needed by the 
function process. The same analogy stands for out-
puts, but in a less restrictive form than C where only 
one value can be returned. Node inputs and outputs 
are sometimes referred to as Terminals. 

Node parameters 
Node parameters are equivalent to C/Matlab con-
stant variables. They are specifi ed at build-time and 
stay constant throughout the run. Node parameters 
scope is local to the Node that contains them, me-
aning that they cannot be shared between Nodes at 
run-time. Like in C/Matlab, using Node parameters 
can improve run-time performance over the use of 
typical Node inputs, but lacks fl exibility. Initialization 
of Node parameters is typically done by editing pa-
rameters fi elds contained in each Node, setting the-
ir types and values manually. It is also possible to de-
fi ne a Node parameters to be a SUBNET _ PARAM, which 
indicates that this parameter will be initialized at bu-
ild-time by the Sub-network containing the Node (see 
Sub-networks section). 

Datatypes and Operators
Unlike Matlab that mainly supports the complex-do-
uble-matrix type, FlowDesigner (like C and C++) has 
support for many different types. The basic FlowDe-
signer types are: Bool, Int, Float, Stream, String, Vec-
tor and Matrix. There are also toolbox-specifi c types, 

Dominic Létourneau
Jean-Marc Valin

François Michaud
Carle Côté

Dominic Létourneau has a Bachelor's degree in Compu-
ter Engineering and a Master's degree in Electrical En-
gineering from the Université de Sherbrooke, Québec, 
Canada. Since 2001, he is a research engineer at the 
LABORIUS, the Research Laboratory on Mobile Robo-
tics and Intelligent Systems of the Université de Sher-
brooke. He has been working on FlowDesigner along 
with Jean-Marc Valin since 1999. FlowDesigner is being 
supported, enhanced and used at LABORIUS, with the 
help of Carle Côté, François Michaud and many others. 
The LABORIUS team have research interests that co-
ver combination of systems and intelligent capabilities to 
increase the usability of mobile robots in the real world. 
This work is supported by the Canada Research Cha-
ir program.

Contact with the authors: fl owdesigner-devel@li-
sts.sourceforge.net

Figure 1. FlowDesigner 0.8.2



www.software20.org

like FFNet (Artificial Neural Networks), VQ (Vector Quantizer), 
GMM (Gaussian Mixture Model), etc. 

There are many binary operators that are defined in the 
FlowDesigner operator tables, but the most useful are : add, 
sub, mul, div, concat, greater, smaller and equal. Operators are 
implemented as functions taking two input objects and retur-
ning the new resulting object after the operator is applied. 
Operators are defined for each object pair with different or 
identical types. The appropriate function to compute the re-
sult of each operator is determined at run time, looking for 
the data type of the operands first then calling the appropria-
te function. If the operator is not available for the operands da-
ta types, a run time exception is thrown. Applying operators 
on more than two objects is possible by cascading the bina-
ry operators. 

Links 
Links represents inputs/outputs connections between blocks. 
A Link can only be created between an input and an output 
that are data type compatible. This means that some Nodes 
expect a certain type of data as input and will generate a run-
time exception (which will abort execution) if the wrong data-
type is used (e.g. a Load Node expects a Stream as input and 
nothing else). Some Nodes, like the NOP (no-op) Node, can ta-
ke any type as input. Some Nodes have more complex beha-
vior, like the Add Node that can add two floats, two Vectors of 
the same dimension, but cannot add a Bool and a Vector. The-
re is no real correspondence between FlowDesigner Links 
and C or Matlab constructs.

Sub-networks (composite nodes) 
A sub-network (or subnet) is a collection of connected No-
des that can be used as if they were a single Node (also cal-
led composite Node). Inputs and outputs of the sub-networks 
must be identified by giving names to the appropriate inputs/
outputs of the connected Nodes collection. Most FlowDe-
signer subnets are saved into .n files, which are almost the 
exact equivalent of Matlab's .m files. There is no real C equ-
ivalent because C is a compiled language, although it could 
be seen as a C function calling another C function. 

Sub-networks parameters
Like Nodes, Sub-networks can have parameters. In fact, Sub-
networks parameters are Nodes parameters that are identi-
fied (SUBNET _ PARAM) to be defined at build-time by the Sub-ne-
twork containing them. They behave exactly as Node parame-
ters and can be either defined manually or be defined in ano-
ther Sub-network containing them.

Network
Network is the name given to the main Sub-network of a pro-
ject. 

Internal mechanisms of 
FlowDesigner
In order to understand data processing with FlowDesigner, 
this section explains the main mechanisms involved.

Pull and self-scheduling mechanisms
With data-flow Networks, two interaction mechanisms are typi-

cally implemented: push and pull.  Pushing is when an interac-
tion between processing elements is initiated by the data sen-
der (producer); pulling occurs when an interaction is initiated 
by the data receiver (consumer). Push connections are appro-
priate for communication triggered by asynchronous events, 
while pull connections instructs the source element to send 
data only when the destination element is ready to process. 
FlowDesigner was originally designed for image and audio si-
gnal processing (DSP), having to deal with synchronous data 
processing. That explains why FlowDesigner uses pull mode 
architecture. The pull mechanism also provides the simplicity 
of designing processing elements that do not have to be awa-
re of the others and where everything is self-scheduled.  Self-
scheduling happens when Nodes are asked to output their re-
sults: each output Node (sink Nodes) calls their input Nodes to 
compute recursively in order to be able to obtain the input data 
required for calculation. This kind of computation does not re-
quire to have a specific scheduler that tells when a Node has 
to process its input data.  This simple implicit scheduling me-
chanism makes it possible to build Sub-networks from smaller 
functional Nodes without running into efficiency problems cau-
sed by scheduling overhead.

Sub-networks and Iterators
Every FlowDesigner program contains a Network called MAIN, 
which is equivalent to the main() function in a C program. Ho-
wever, you can add Sub-networks, equivalent of sub-routines 
from any Network or Sub-network that can contain several No-
des connected together. Doing so, you simplify the program-
ming and you can reuse those Networks as Sub-networks in 
a higher level Network. It is very important to name the new-
ly created Network a different name than MAIN for obvious re-
asons. Those Networks must absolutely have named inputs 
and outputs in order to be used in higher level Networks. To 
add Sub-networks into a Network of higher level, right-click on 
the background and select the Sub-network you want to add 
from the menu (New Node->Subnet).

Another useful type of Network you can create is the Ite-
rator. An Iterator is a control structure that performs a loop. 
It stops looping when a certain control condition is met. The 
condition is a boolean value the Iterator gets from a Node. To 
define the Iterator's condition, left click on a Node output whi-
le holding the CONTROL modifier. When an Iterator is inser-
ted into a higher level Network, it performs locally X iterations 
when its outputs are requested. Using Iterators enables the 
user to create feedback loops with the Feedback Node inser-

Figure 2. Hello World Network



www.software20.org

ted into your Iterator. The Feedback Node allows to use values 
that are calculated N iteration in the past that are stored auto-
matically in the output buffers of the Nodes preceding the Fe-
edback Node.

Buffering
FlowDesigner's buffering mechanism allows Nodes to com-
pute their outputs only once per iteration for better efficien-
cy. During a given iteration, if Node A has calculated its out-
puts which are requested by Node B, Node A just returns the 
results stored in its output buffers, without propagating the re-
quest recursively to its input Nodes. Buffer size is managed by 
the system, enabling Nodes to request outputs over the N pre-
vious iterations, enabling the creation of feedback Nodes. 

Automatic type checking and type conversion
Automatic type checking and type conversion are provided 
by the data-flow library. When linking Nodes together with the 
GUI, users are automatically notified when a link between two 
Nodes is invalid, which prevents errors and misuses of a No-
de. Type checking is also performed at run time. When a No-
de is expecting a particular type and does not receive this ty-
pe as an input, it tries to convert the value in the desired type 
and if the conversion is not possible, throws an exception.

Automatic object creation and destruction
FlowDesigner uses reference counting pointers (or smart po-
inters), also referred as ObjectRef in the documentation and 
C++ code, to transport the data-type objects between No-
des. ObjectRef can be used like standard Object* pointers, but 
will also count the number of reference to any Object derived 
class and delete the object when unused. This can be seen as 
a very simple garbage collector. Objects creation and destruc-
tion are handled by the system, to avoid dealing with memo-
ry allocation. Objects can also be allocated in memory pools, 
which enables the data-flow library to reuse the already allo-
cated memory for certain object types. 

Dynamically loaded toolboxes
FlowDesigner toolboxes are loaded dynamically when starting 
the application. The default path is scanned recursively (/usr/
lib/flowdesigner/toolbox/) for toolbox definitions (.def files) and 
for toolbox libraries (.tlb files). The user can also set environ-
ment variable named FLOWDESIGNER _ PATH, for user-defined to-
olbox directories, which is useful when having a system wi-
de installation of FlowDesigner and local installation of some 

user-defined toolboxes.

Developing applications with 
FlowDesigner

Creating your first FlowDesigner Networks
The first example is the classical Hello World. Figure 2 shows 
a Constant Node with its Node parameter value defined as 
a String initialized to “Hello World”. This Node is connected 
to a Print Node which outputs its input value in a text conso-
le when pulled. The output terminal of the Print Node need to 
be named to indicate that this output terminal need to be pul-
led by the self-scheduling mechanism of FlowDesigner. Run-
ning this Network produces a single “Hello World” printed on 
the console and exits.

The Figure 3 show how to create a simple FOR loop which 
prints iteration count in console at each iteration. Listing 1 
shows an equivalent program written in C. 

Figure 3 shows how a loop is implemented in FlowDesi-
gner. To create the loop, Sub-network type Iterator is required. 
Iteration condition is also needed to evaluate the exit condition 
of the iteration control loop. In this case, CONDITION terminal is 
pulled to evaluate that the iteration count is less than 5 at each 
iteration. If the condition is true, OUTPUT terminal is pulled and 
will print the iteration count in a text console. Otherwise, FOR _

LOOP Sub-network iteration ends and returns the OUTPUT value 
to the MAIN Network.

Inserting graphical probes to help you debug your 
application
In order to understand how FlowDesigner handles FOR _ LOOP 
Iterator Sub-networks, it might be interesting to see at run ti-
me how it behaves. Figure 4 shows a modified FOR _ LOOP Sub-

Figure 3. FOR loop iterator Sub-network

Listing 1. Equivalent to Figure 3 program written in C

int main(int argc, char **argv)

{

   for(int i = 0; i < 5; i++)

      printf(“<Int %i >\n”, i);

   return 0;

}

On the Net
• FlowDesigner home page
  http://flowdesigner.sourceforge.net/
• LABORIUS : Research Laboratory on Mobile Robotics and Intel-

ligent Systems
  http://www.gel.usherbrooke.ca/laborius/
• RobotFlow toolkit for FlowDesigner
  http://robotflow.sourceforge.net/
• Mobile and Autonomous Robotics Integration Environment (MARIE)
  http://marie.sourceforge.net/
• Octave toolbox
  http://www.octave.org/
• GNOME2 and GTK2 developer's site
  http://developer.gnome.org/



www.software20.org

network that uses a TextProbe to output the CONDITION value 
at run-time. At run-time, a probe window is displayed (CON-
DITION window in Figure 4) allowing to show the value of the 
data that flows in the probe. Using Forward, Stop and Execute 
buttons in the probe window, it is possible to do a step-by-step 
debugging strategy by tracking data at precise iteration count 
of FlowDesigner's process. 

Execution of FlowDesigner networks from the 
console
An application called batchflow is provided with FlowDesigner. 
It allows to run Networks created with the FlowDesigner GUI 
in console mode. The only requirement for the Networks to 
run is that the user needs to avoid using graphical probes in-
to them. The FlowDesigner Networks can also be treated as 
shell scripts and are executed directly. The first line of each 
Network file contains #!/usr/bin/env batchflow to tell the shell 
which application to run to parse the rest of the file, conta-
ining the XML description of the Network. An application cal-
led gflow is also provided with FlowDesigner to allow the user 
to run Networks without the integrated development interface 
but with graphical probes. 

Using available FlowDesigner 
toolboxes and external applications

Using the Fuzzy Logic toolbox
Figure 5 shows how the Fuzzy Logic toolbox can be used to 

control a fan. This example is provided with the FlowDesigner 
Fuzzy Logic toolbox. Extensive use of the Concat operator 
is performed in order to create three fuzzy sets : HUMITIDY, 
TEMPERATURE and SPEED. Each FuzzySet contains three 
fuzzy trapezoidal membership functions. The top right of the 
Figure 5 shows an example of parameters that are used to set 
the coordinates of one trapezoidal function. The fuzzy control-
ler is created with the GenericModel Node, taking the HUMI-
DITY and TEMPERATURE sets as the antecedent sets and 
SPEED as the consequent set. The last FuzzyRule out of nine 
rule possible is displayed in Figure 5, which tells the Generic-
Model Node the following rules : IF TEMPERATURE is HIGH 
and HUMIDITY is HIGH THEN the SPEED is HIGH. The Fuz-
zyRules and FuzzySets names must match for the Generic-
Model to be created properly. FuzzySets used for the antece-
dent part of the rules and FuzzySets used for the consequ-
ent part of the rules must be grouped together with the Con-
cat operator. The GenericModel Node implements the Mam-
dani model and uses the center of area (COA) method for de-
fuzzification. The Fuzzy Logic toolbox is not complete yet, but 
already contains all the basic Nodes and data types to create 
systems with unlimited number of membership functions, sets 
and rules. Complete fuzzy systems can be created and saved 
to disk for use with user-defined setup and FlowDesigner Ne-
tworks.

Using the Artificial Neural Network toolbox
The Artificial Neural Network (ANN) toolbox provides easy to 
use Nodes to train the ANN and to use already trained ANNs 
to process new input data. Figure 6 shows an example taken 
from the RobotFlow toolbox available at http://robotflow.sourc
eforge.net/demo.html. This demo contains FlowDesigner Ne-
tworks that are used to recognize alphanumeric printed text 
extracted from color images using the FlowDesigner ANN to-
olbox. Before training the ANN, the user must classify image 
templates to make input and output sets, represented as input 
and output Vectors in FlowDesigner. The idea with this demo 
is to provide a simple algorithm that extracts characters from 
color components. Characters are extracted from the image 
with a simple color segmentation algorithm, with the black co-
lor representing text and orange representing the background 
color. For each template image, a pair of input and output Vec-

Figure 4. FOR loop iterator Sub-network with TextProbe

Figure 5.  Fuzzy Logic toolbox
Figure 6. Input and output sets required to train the Artificial 
Neural Network



www.software20.org

tors is created. Each extracted character is scaled and trans-
formed into a Vector to create the input Vector. The user se-
lects, with the SymbolKeypad GUI, the appropriate charac-
ter that corresponds to the template image. An output Vec-
tor associated to the input Vector is then created. Once each 
character is classified, the training set containing input/output 
Vector pairs will be saved to disk and used to train the ANN 
subsequently.

Figure 7 shows the FlowDesigner training Network that is 
used and all the parameters given to the NNetTrainDBD No-
de. The NNetTrainDBD Node needs the previously saved in-
put and output sets and an initialized ANN. The initialized 
ANN is composed of proper layer(s) configuration and is cre-
ated with the NNetInit Node. The topology of the ANN is spe-
cified as a Node parameter and each ANN layer is compo-
sed of an arbitrary number of neurons and corresponding we-
ights randomly initialized. The NNetTrainDBD uses the delta-
bar-delta training algorithm that adapts the learning rate au-
tomatically. The NNetTrainDBD Node parameters GUI shows 
that the training will be done in 2000 epochs.  Finally, once the 
ANN is trained and the user is satisfied with the results, the 
weights and the ANN configuration are saved to disk. Multi-
ple ANN configurations and training algorithms are available 
in the ANN toolbox. The user is encouraged to try the demon-
stration to better understand how to use them.

Using FlowDesigner, RobotFlow and MARIE for 
robotic applications development
RobotFlow and MARIE are two projects that are currently 
using FlowDesigner. RobotFlow is a mobile robotics toolkit ba-
sed on the FlowDesigner project. The visual programming in-
terface provided with FlowDesigner helps visualize and un-
derstand what is really happening in the robot's control loops, 
sensors, actuators, using graphical probes and debugging in 
real-time. MARIE, which stands for Mobile and Autonomous 
Robotics Integration Environment, is a robotic development 
and integration environment focused on software reusabili-
ty and exploitation of already available APIs and middlewares 
frequently used in robotics. One of MARIE's goal is to expand 
stand-alone applications scope, like FlowDesigner/RobotFlow, 
by adding the possibility to create interactions between them 
and by adding the possibility to distribute them on multiple 

processing Nodes.
Figure 8 shows a semi-autonomous teleoperation project 

created with MARIE. In this project, FlowDesigner/RobotFlow 
have been used to create control logic and glue logic required 
to interconnect and control all applications involved in the pro-
ject. The components Behaviors FDAA, Expression FDAA 
and FDJoystick FDAA are three FlowDesigner independent 
Networks running in separated process managed by MARIE. 
Developing control and glue logic in FlowDesigner accelerated 
the overall development by using already available functiona-
lities, by having a graphical representation support for imple-
mentation, and by having access to debug tools for investiga-
ting undesirable robot's behaviors at run-time.

Expanding FlowDesigner

Building your own nodes
In FlowDesigner, all Nodes are implemented in C++ as a class 
that derives, directly or indirectly, from a base class called No-
de (note that most Nodes derive from BufferedNode). Creating 
new Nodes does not require knowledge of FlowDesigner's in-
ternal processes and design, but only the procedure to define 
inputs, outputs, parameters, and the desired processing func-
tion for calculation by the Node. 

Listing 2 shows a simple MyNode Node that adds two valu-
es and transfers the result in its output. Most of the new No-
des will derive from either the Node abstract class or the Buf-
feredNode abstract class. You should use public inheritance 
when deriving your new class. In all cases, you need to define 
a constructor for your new Node class. The parameters for this 
constructors are: string nodeName, const ParameterSet &pa-

rams), which are used to initialize the base class. Also, if you 
derive from BufferedNode, you need to define the virtual vo-
id calculate(int output _ id, int count, Buffer &out) func-
tion. The arguments are the ID of the output requested (out-
put _ id), the iteration ID (count) and the output buffer for the 
requested output (out). The calculate function is expected to 
assign an object to out[count]. If you derive directly from the 
Node class, you need to override the ObjectRef getOutput(int 
output _ id, int count) function. The meaning of output _ id 
and count is the same as for the BufferedNode equivalent, and 

Figure 7. Training the Artificial Neural Network with 
FlowDesigner

Figure 8. Semi-autonomous teleoperated robot using MARIE 
and FlowDesigner



www.software20.org

the result should be returned as an ObjectRef (smart Object 
pointer).

Comments at the beginning of the source code (starting 
with @ ) define in which category the Node belongs, the de-
scription of the Node,  and the definition of all inputs, outputs 
and parameters. The C++ code must match the textual de-
scription for the Node to work properly.  The DECLARE _ NODE-

(MyNode) macro is used to register the Node in a dictionary 
when the toolbox is dynamically loaded.  Once ready for use, 
the definitions of the Nodes (C++ comments) are then parsed 
by a PERL script (info2def.pl), provided with FlowDesigner, to 
produce an XML description of each Node for each toolboxes. 
The FlowDesigner GUI is both using the definition of available 
Nodes and the internal Node dictionary to display the usable 
Nodes in the Nodes selection menu.

Defining your data types and operators
Using standardized data types and operators reduces com-
plexity of the C++ Nodes, improves code readability and helps 
uniformize Nodes. User-defined data types and operators can 
easily be added in new toolkits. 

Listing 3 shows how to create your own MyType data type. 
In order to be used in new Nodes, new types must derive from 
the Object base class. That is the only absolute requirement. 
However, if you want the new type to be integrated with Flow-
Designer, there are several things you can do: 

Listing 2. FlowDesigner user-defined C++ Node

#include "BufferedNode.h"

#include "Buffer.h"

#include "operators.h"

//Forward declaration

class MyNode;

DECLARE_NODE(MyNode)

/*Node

 *

 * @name MyNode

 * @category Operator

 * @description Adds two input values and returns the result

 *

 * @input_name INPUT1

 * @input_description First value

 * @input_type any

 *

 * @input_name INPUT2

 * @input_description Second value

 * @input_type any

 *

 * @output_name OUTPUT

 * @output_description Result of the addition

 * @output_type any

 *

END*/

class MyNode : public BufferedNode {

   

   int input1ID;

   int input2ID;

   int outputID;

public:

   MyNode(string nodeName, ParameterSet params)

   : BufferedNode(nodeName, params)

   {

      input1ID = addInput("INPUT1");

      input2ID = addInput("INPUT2");

      outputID = addOutput("OUTPUT");

   }

   void calculate(int output_id, int count, Buffer &out)

   {

      ObjectRef inputValue = getInput(input1ID, count);

      ObjectRef input2Value = getInput(input2ID, count);

      //output the result in the out Buffer

      out[count] = inputValue + input2Value;

   }

};

Listing 3. Defining a new FlowDesigner data type

#include “Object.h”

class MyType : public Object

{

  private:

   //private variables / functions

  public:

  MyType()

  {

   //implementation of the default constructor

  }

  MyType(const MyType &cpy) 

  {

   //implementation of the copy constructor

  }

  virtual void printOn(ostream &out = cout) const 

  {

   //implementation of printOn(...)

  } 

  MyType& operator+ (const MyType &obj)

  {

   //Implementation of the operator +, useful for 

FlowDesigner

   //add operator used in Listing 3.

  }

  

  virtual void readFrom(istream &in);

  {

  //implementation of readFrom(...)

  }

};

DECLARE_TYPE(MyType);



www.software20.org

•  Implement the void printOn(ostream &out) const func-
tion. This function writes the object to the out stream in the 
FlowDesigner format.

•  Implement the void readFrom (istream &in) function. This 
function reads the object from the in stream in the FlowDe-
signer format.

•  Add the macro DECLARE _ TYPE(MyType) to the C++ file whe-
re the object is implemented. This adds the new MyType 
object type to the FlowDesigner type dictionary.

Listing 4 shows how to define a new add operator for our new 
MyType type. The REGISTER _ DOUBLE _ VTABLE macro is useful to 
register the add operator in the addVtable (add table) with the 
input types MyType as the first operand and second operand. 

Conclusions
FlowDesigner is still in its early stage and is a work in pro-
gress. Nevertheless, it is already usable for a lot of applica-
tions. The easiest way to use FlowDesigner is by using its gra-
phical user interface (GUI) and connecting existing Nodes to-
gether to form the data-flow Network. Also, the user can bu-
ild its own Nodes and toolboxes without knowing all the under-
lying principles and classes used by the data-flow processing 
engine. Future FlowDesigner improvements will include: 

•  Better documentation and more examples,
•  Support for both Linux and Windows,
•  Octave toolbox,
•  GUI improvements,
•  Better support for importing and exporting Networks,
•  More visualization Probes.

FlowDesigner and the related projects are developed by LA-
BORIUS, the Research Laboratory on Mobile Robotics and In-
telligent Systems, Québec, Canada. Any suggestions or con-
tributions are welcomed to improve FlowDesigner. Do not he-
sitate to contact the authors if you need more informations.

Listing 4. Defining a new FlowDesigner operator

#include "operators.h"

#include "net_types.h"

ObjectRef addMyType(ObjectRef op1, ObjectRef op2) {

   //Smart pointers to MyType objects

   RCPtr<MyType> op1Value = op1;

   RCPtr<MyType> op2Value = op2;

   //return the result of the addition

   return ObjectRef(new MyType((*op1Value) + (*op2Value)));

}

REGISTER_DOUBLE_VTABLE(addVtable,addMyType,MyType,MyType);


