
Noise Mask for TDOA Sound Source Localization of Speech on Mobile
Robots in Noisy Environments

François Grondin and François Michaud

Abstract— Sound source localization is an important chal-
lenge for mobile robots operating in real life settings. Sound
sources of interest, such as speech, are often corrupted by
broadband coherent noise sound source(s) that are non-
stationary during transitions between steady-state segments.
The interfering noise introduces localization ambiguities leading
to the localization of invalid sound sources. Masks to reduce
such interferences perform well under stationary noise, but the
performance degrades as localization of invalid sound sources
generated by noise appear and disappear suddenly during
transitions between steady-state. This paper presents a new
mask based on speech non-stationarity to discriminate between
the time difference of arrival (TDOA) of speech source and
noise transition. Simulations and experiments on a mobile
robot suggest that the proposed technique improve TDOA
discrimination and reduces significantly localization of invalid
sound sources caused by noise.

I. INTRODUCTION

Sound source localization on mobile robots can be
performed using Multiple Signal Classification based on
Standard Eigenvalue Decomposition (SEVD-MUSIC). This
method was initially used for narrowband signals [1], and
was adapted for broadband sound source localization [2].
This method improves noise robustness by decomposing the
covariance matrix obtained from the spectral observations at
each microphone in both noise and noisy signal subspaces.
The direction of a sound source corresponds to the direc-
tional vector orthogonal to the noise subspace. This method
performs well as long as the noise power is weaker than
the sound source of interest. Multiple Signal Classification
based on Generalized Eigenvalue Decomposition (GEVD-
MUSIC) is proposed to deal with this issue [3]. SEVD-
MUSIC and GEVD-MUSIC significantly improve robustness
to noise, but remains sensitive to reverberation, and eigen-
value decomposition involves a high computational load.
Multiple Signal Classification based on Generalized Singular
Value Decomposition (GSVD-MUSIC) is proposed to reduce
computational load [4]. While this method remains sensitive
to highly reverberant environments, it improves localization
accuracy because eigenvectors are mutually orthogonal.

Another approach for sound source localization on mobile
robots is to use a delay-and-sum beamformer [5]. This
method relies on the Generalized Cross-Correlation with
Phase Transform (GCC-PHAT) to perform time difference
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of arrival (TDOA) estimation. This method is robust to
reverberation but remains sensitive to broadband additive
noise. Beamforming based on weighted GCC-PHAT, as im-
plemented in the ManyEars framework [6], [7], is appealing
to perform sound source localization: it is robust to rever-
beration, has low-complexity, and is robust to additive noise
if noise can be masked. Noise masking highly relies on an
accurate background noise estimation. To improve robustness
to noise of GCC-PHAT, a non-recursive unbounded mask is
derived from the instantaneous signal-to-noise ratio (SNR),
and the results is correlated with the intensity of the sound
source of interest [8]. To make the result independent of
the amplitude of the sound source, a recursive soft mask
with bounded values is used in ManyEars [6], [7]. We also
recently introduced in ManyEars a hard binary mask to
improve its robustness to broadband coherent noise [9].

The masks implemented so far in ManyEars [8], [9] rely
on the Minima Controlled Recursive Averaging (MCRA)
method to estimate background noise [10], [11]. However,
background noise usually changes over time if the robot op-
erates in dynamic environments. Computer fans on the robot
can also start and stop according to the central processing
unit (CPU) usage. When noise changes, the MCRA method
requires a few seconds to adapt and to provide an accurate
noise estimation. During this transition, the masks no longer
hide noise components, which can lead to localization of
noise sources instead of speech. To our knowledge, this
problematic has not yet been addressed in other works.

To overcome this problem, this paper presents a new mask
that can deal with noise transition. This mask, which we
refer to as transition mask, is an extension of the hard mask
previously introduced [9] and measures the stationarity of
previous and future frames to mask noisy time-frequency
regions. The paper is organized as follows. Section II briefly
presents the weighted GCC-PHAT method and noise masks
used for background noise estimation, to then explain our
new transition noise mask. Section III describes the ex-
periments conducted in simulation and on a mobile robot
platform.

II. WEIGHTED GCC-PHAT WITH NOISE MASKS

To implement GCC-PHAT, the Short-Time Fourier Trans-
form (STFT) X l

m[k] is computed using (1) for each micro-
phone m with frames of N samples, and spaced by a hop
of ∆N samples. The expression xm[n] represents the signal
from each microphone and n is the discrete-time index. A
Hann window w[n] of N samples is used to reduce spectral



leakage. The variables l and k stand for the frame and bin
indexes, respectively.

X l
m[k] =

N−1∑
n=0

w[n]xm[l∆N + n]e−j2πkn/N (1)

The weighted GCC-PHAT between microphones p and
q is expressed by (2). The expression (...)∗ stands for
the complex conjugate operator, while the variable ζlpq[k]
is a frequency mask introduced to reduce coherent noise
contribution. The expression ε is also added to avoid overflow
when the spectrum magnitude goes to zero. The weighted
GCC-PHAT result is Rlpq[n].

Rlpq[n] =
1

N

N−1∑
k=0

ζlpq[k]X l
p[k]X l

q[k]∗

|X l
p[k]||X l

q[k]|+ ε
ej2πkn/N (2)

To estimate TDOA, the cross-correlation result Rlpq lies
in the interval [0, N − 1] and is mapped on the new interval
[−N/2 + 1, N/2] using the expression R̂lpq as in (3). The
modulo N operation ensures that a negative TDOA value,
initially mapped to a value greater than N/2 with the Inverse
Fourier Transform (IFFT) in (2), is brought back to the
desired range.

R̂lpq[n] = Rlpq [n mod N ] (3)

The maximum cross-correlation index is obtained by (4)
to provide the plausible range of a TDOA value, which lies
in the interval [−nmaxpq , nmaxpq ].

τ lpq = arg max
n

(
R̂lpq[n]

)
−nmaxpq ≤ n ≤ nmaxpq (4)

The maximum cross-correlation index corresponds to the
case when the sound source and the pair of microphones lie
on the same plane, and is given by (5). The variables fs, c,
xp and xq stand for the sampling rate (in samples/sec), the
speed of sound (in m/sec), and the positions of microphones
p and q, respectively.

nmaxpq =

(
fs
c

)
‖xp − xq‖ (5)

The maximum cross-correlation energy Elpq is given by
(6).

Elpq = R̂lpq[τ
l
pq] (6)

To reduce noise contribution, a soft mask introduced in [8]
relies on the a priori SNR, obtained from the background
noise estimated with the MCRA method. A mask is estimated
for each microphone channel and both masks are combined
to obtain ζlpq[k] defined by (7).

ζlpq[k] = ζlp[k]ζlq[k] (7)

When this mask is used, broadband coherent noise may
leak from each bin and generate undesired dominant peak

in the TDOA estimation result. To solve this issue, a binary
mask for each microphone channel, called hard mask because
it only takes discrete values of 0 and 1, can be used with the
MCRA method [9].

A. Transition Noise Mask

The MCRA method is efficient to estimate stationary
noise as long as it can take a few seconds to adapt to
the background noise. When a robot operates in a dynamic
environment, noise is often non-stationary during sound
transitions. For instance, fans installed on the robots or in the
room may start and stop as time goes by, and this introduces
abrupt transitions between steady-state segments.

To consider such conditions, we define two working
hypotheses [12]:

1) Speech phonemes are stationary for less than 25 msec.
2) After a fast transition, noise stays stationary for more

than 25 msec.
The transition noise mask exploits these characteristics

to differentiate noise from speech. The mask is computed
using the product of |X l

p[k]|2 and |X l
q[k]|2, as opposed

to the soft and hard masks that are computed directly
from the individual spectrum of each microphone. The
expression |X l

pq[k]|2 = |X l
p[k]|2|X l

q[k]|2 improves speech-
noise discrimination as the inter-channel spectrum magnitude
correlation is higher for speech than for noise. A rectan-
gular window smooths the log magnitude of the spectrum
frequency-wise according to (8). The smoothed result is
expressed by Y lpq[k], and the rectangular window is made of
(2W + 1) samples. The spectral envelope is extracted with
the logarithm and this operation also reduces the spectral
distortion caused by the high energy outliers when the
moving average is computed. The expression ε is added to
avoid underflow when the spectrum power goes to zero. This
operation reduces the variance of the log magnitude between
adjacent frames.

Y lpq[k] =
1

2W + 1

W∑
∆k=−W

log
(
|X l

pq[k + ∆k]|2 + ε
)

(8)

Y lpq[k] is used to evaluate two parameters:
• Alpq[k], the difference between the current power level

and the minimum value of a buffer made of the ∆A
previous frames, using (9):

Alpq[k] = Y lpq[k]−min
{
Y l−∆A+1
pq [k], . . . , Y lpq[k]

}
(9)

• Blpq[k], the difference between the current power value
and the minimum value within a window of ∆B future
frames, defined by (10):

Blpq[k] = Y lpq[k]−min
{
Y lpq[k], . . . , Y l+∆B−1

pq [k]
}
(10)

This introduces a latency of ∆N∆B/fs sec because
the window requires samples ahead in time.



To explain the role of these two parameters, Fig. 1
illustrates their influences with four types of signal: 1) steady
state noise (NSS); 2) noise level rises quickly (NRI); 3) noise
level drops quickly (NDP); 4) speech (SPH). Fig. 1a) to 1d)
illustrate how Y lpq[k] reduces the power variance. For Alpq[k],
Fig. 1f) and 1h) illustrates that large differences are observed
for NRI and SPH, while small differences are observed for
the NSS and NPD shown in Fig. 1e) and 1g). For Blpq[k],
Fig. 1i) and 1j) shows that small differences are observed for
NSS and NRI, and Fig. 1k) and 1l) illustrates that differences
are greater for the NDP and SPH.

These observations indicate that only speech generates
large values for both the signals Alpq[k] and Blpq[k]. This
condition, defined as Dl

pq[k], can be identified using (11),
with θA and θB proposed as fixed threshold values.

Dl
pq[k] =

{
1
(
Alpq[k] > θA

)
∧
(
Blpq[k] > θB

)
0 otherwise

(11)

The transition noise mask ζlpq[k] can therefore be defined
in relation to Dl

pq[k] as in (12) and used in (2) during
GCC-PHAT computation. A majority vote is performed in
(12), with ∆D being the window size in frames and θD the
majority threshold, to filter out false detections. For instance,
Dl
pq[k] may sporadically trigger a false value of 1 when non-

stationary percussive sounds are observed.

ζlpq[k] =

1

(
l+∆D∑
l′=l

Dl′

pq[k]

)
> θD

0 otherwise

(12)

III. RESULTS

In this section, performance using the soft, hard and tran-
sition noise masks are presented for experiments conducted
in simulation and with a mobile robot. Table I presents the
parameters used. Only W , ∆A, ∆B, ∆D, θA, θB , and θD
have to be fine tuned empirically, the others are being set
according to environmental settings. fs is set at 48 kHz
for the acquisition of high frequency components in speech.
N is the same as in [9] and the hop size ∆N ensures an
overlap of 50%. The speed of sound c is defined at 20◦C
and 101.1 kPa [13]. The expression ε is chosen to avoid
overflow or underflow while still be small enough to preserve
the precision of (2) and (8). The expression W is set to
a value that provides a smoothing window that preserves
frequency resolution. ∆A and ∆B are chosen to exploit the
non-stationarity of speech, and also deal with reverberation.
∆D and θA, θB and θD are chosen empirically to capture
most of the speech features and reject noisy regions. With
the proposed parameters, a latency of ∆N∆B/fs = 213
msec is introduced. A latency of this range can be considered
negligible in human-robot vocal interaction.

The theoretical delays τt and τc are associated to the target
(i.e., the sound source of interest) and the noise sources,
respectively. Positions of the target source and the noise
source in relation to the microphones are known for the

TABLE I: Parameters used in the experiments

Parameters Values Parameters Values
N 1024 ∆A 20

∆N 512 ∆B 20
fs (Hz) 48000 ∆D 3
c 343.0 θA 2.0
ε 1E-10 θB 2.0
W 10 θD 1

experiments conducted, allowing to evaluate the performance
of TDOA sound localization using the different noise masks.
τt and τc are defined by (13) and (14), where st and sc
are vectors which hold the cartesian positions of the sound
source of interest and noise sources, respectively.

τt =

(
fs
c

)
(‖st − xp‖ − ‖st − xq‖) (13)

τc =

(
fs
c

)
(‖sc − xp‖ − ‖sc − xq‖) (14)

To characterize the performance of the transition noise
mask, the following metrics are introduced. The expression
tlpq takes a value of 1 when the delay τ lpq is assigned to
the sound source of interest, and a value of 0 otherwise. A
delay τ lpq is considered to be assigned to the sound source
of interest when the absolute value of the difference with
the theoretical delay τt is less or equal to a constant ∆τ , as
shown in (15).

tlpq =

{
0
∣∣τ lpq − τt∣∣ > ∆τ

1
∣∣τ lpq − τt∣∣ ≤ ∆τ

(15)

Similarly, the expression clpq is set to 1 when the noise
source generates the coherence noise delay, and a value of
0 otherwise. When coherent noise dominates, the TDOA is
assigned to the noise source and the absolute value of the
difference with the delay τc is less or equal to ∆τ , provided
by (16).

clpq =

{
0
∣∣τ lpq − τc∣∣ > ∆τ

1
∣∣τ lpq − τc∣∣ ≤ ∆τ

(16)

A higher energy level normally indicates a higher con-
fidence level, which is usually used with a subsequent
confidence-based decision stage [7]. To evaluate energy
levels, tlpq and clpq are multiplied by the associated maximum
cross-correlation energy Elpq , as given by (17) and (18).
These weighted averages give more importance to delays as-
sociated to a high energy level, and thus provide meaningful
metrics to measure overall performance.

Tpq =

(
L−1∑
l=0

tlpqE
l
pq

)/(L−1∑
l=0

Elpq

)
(17)

Cpq =

(
L−1∑
l=0

clpqE
l
pq

)/(L−1∑
l=0

Elpq

)
(18)



(a) NSS: Y l
pq [k] (b) NRI: Y l

pq [k] (c) NDP: Y l
pq [k] (d) SPH: Y l

pq [k]

(e) NSS: Al
pq [k] (f) NRI: Al

pq [k] (g) NDP: Al
pq [k] (h) SPH: Al

pq [k]

(i) NSS: Bl
pq [k] (j) NRI: Bl

pq [k] (k) NDP: Bl
pq [k] (l) SPH: Bl

pq [k]

Fig. 1: Signals Y lm[k], Alm[k] and Blm[k] for NSS, NRI, NDP and SPH

TABLE II: Simulation parameters

Parameters Values

x1 −0.1ı̂− 0.1̂+ 0.0k̂

x2 −0.1ı̂+ 0.1̂+ 0.0k̂

st +2.0ı̂+ 4.0̂+ 0.5k̂

sc −2.0ı̂+ 0.0̂+ 0.1k̂

∆τ 5

A. Simulation Results

Simulations are performed under a wide range of reverber-
ation levels and SNRs. Speech is used as the sound source
of interest, and the noise source is made of white noise
bursts. These sources are convolved with their respective
room impulse responses (RIRs) generated for a room of
dimensions 10 m × 6 m × 3 m using Allen and Berkley
image method [14].

Table II presents the parameters used for the simulations.
The unit vectors ı̂, ̂ and k̂ represent the x, y and z axes of
a three-dimensional cartesian coordinate system. The vector
k̂ points toward the ceiling of the simulated room. The
expression ∆τ is chosen to be large enough to capture delays
close to the theoretical value. The simulations are performed
with more than 43 minutes of speech, i.e., 243600 frames.

Figure 2 illustrates the noisy speech spectrum and the soft,
hard and transition noise masks, when the reverberation time
(RT60) is 250 msec and the SNR is 10 dB. Noise bursts are
active for one second, and spaced by periods of one second

of silence. The soft and hard masks erroneously capture noise
bursts in segments A, B and C. The transition mask rejects
noise bursts in segments A and B, and leave the noisy speech
unaltered in segment C for the regions where speech is more
powerful than noise, as desired. For all masks, the clean
speech segment D is left unaltered, as desired.

Figure 3 illustrates the distribution of τt and τc for each
type of masks, when the energy level Elpq is greater than
zero. The soft and hard masks lead to a distribution peak
at the noise delay τc, while the distribution obtained with
the transition mask reaches its maximum value at the target
delay τt.

Table III presents Tpq and Cpq for a wide range of
reverberation levels and SNRs. The sum of Tpq and Cpq may
not equal to 100% if some delay values are not assigned
to the sound source of interest nor to the coherent noise
source. In the ideal case, Tpq should reach 100%, and Cpq
0%. Results indicate that the transition mask provide better
performance for all reverberation levels and SNR values.
With low reverberation (RT60 = 0 msec) and high signal-to-
noise ratio (SNR = 20 dB), Tpq and Cpq reach 99% and 0%,
respectively, using the transition mask, compared Tpq = 69%
and Cpq = 31% with the hard mask and Tpq = 43%
and Cpq = 57% using the soft mask. In high reverberation
conditions (RT60 = 500 msec) and low signal-to-noise ratio
(SNR = 0 dB), the transition mask outperforms the hard and
soft masks, with Tpq = 34% and Cpq = 10% compared
to Tpq = 1% and Cpq = 98% using the hard mask and



(a) Noisy speech spectrum

(b) Soft mask

(c) Hard mask

Time (sec)

Fr
eq

ue
nc

y 
(H

z)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240
4000
8000

12000
16000
20000
24000

A B C D

(d) Transition mask

Fig. 2: Sound spectrum with RT60 = 250 msec and SNR =
10 dB. In a), high and low power levels are shown in red
and blue respectively. In b) to d), the black and white colors
stand for the values 0 and 1, respectively.

Delay (sample)

Pe
rc

en
ta

ge
 (%

)

-30 -20 -10 0 10 20 30
0

10

20

30

40

50

60

70

Soft
Hard
Proposed

Fig. 3: Delay distribution generated with the soft, hard and
transition masks for simulation with RT60 = 250 msec and
SNR = 10 dB

Tpq = 2% and Cpq = 97% using the soft mask.

B. Experiments using a Mobile Robot

Figure 4 shows the IRL-1 robot equipped with an 8-
microphone array. IRL-1 was used to validate the perfor-
mance of the approach in a real-life environment. To scale
down the complexity of the experiment and to simplify
analysis, only two microphones located on the front of the
IRL-1 are used. Since ManyEars relies on the sum of the
weighted GCC-PHAT between each pair of microphones,
the proposed method with two microphones can easily be
adapted to an 8-microphone approach such as ManyEars.

Male speech is played by a loudspeaker installed on the
left of the robot, and a noisy hairdryer is turned on and
off by a participant standing on the right of the robot.

TABLE III: Tpq and Cpq (in parenthesis) using the soft, hard
and transition masks

RT60 SNR Soft Mask Hard Mask Transition Mask
(msec) (dB)

0

20 43% (57%) 69% (31%) 99% (0%)
15 39% (61%) 45% (55%) 99% (1%)
10 30% (70%) 22% (78%) 99% (1%)
5 14% (86%) 11% (89%) 98% (1%)
0 11% (89%) 10% (90%) 99% (1%)

200

20 28% (70%) 55% (44%) 93% (1%)
15 25% (74%) 32% (66%) 93% (1%)
10 18% (82%) 12% (88%) 92% (2%)
5 8% (92%) 6% (94%) 91% (2%)
0 6% (94%) 5% (95%) 92% (2%)

300

20 17% (79%) 40% (51%) 69% (4%)
15 15% (81%) 21% (74%) 69% (4%)
10 10% (87%) 6% (93%) 68% (5%)
5 4% (95%) 3% (96%) 66% (6%)
0 3% (96%) 2% (97%) 66% (6%)

400

20 13% (80%) 33% (51%) 48% (7%)
15 11% (82%) 16% (76%) 48% (7%)
10 8% (88%) 4% (93%) 47% (7%)
5 3% (95%) 2% (97%) 45% (8%)
0 2% (97%) 2% (98%) 46% (8%)

500

20 10% (81%) 28% (50%) 34% (9%)
15 9% (83%) 13% (76%) 35% (9%)
10 7% (88%) 3% (94%) 35% (9%)
5 3% (95%) 2% (97%) 34% (9%)
0 2% (97%) 1% (98%) 34% (10%)

Fig. 4: Pair of microphones used on the IRL-1 robot

The reverberation level in the room is RT60 = 800 msec.
When the hairdryer is active, the SNR is -3.3 dB for the
microphone on the loudspeaker side, and -6.3 dB for the
second microphone on the hairdryer side.

Figure 5a presents the signal spectrum for this experiment.
It shows that the hairdryer dominates speech in segments
A, B, C, D, E and F, and that the soft and hard masks
erroneously capture the hairdryer noise. The noise is domi-
nant over speech, and therefore the transition mask reject all
time-frequency regions when the noise is active, and captures
speech when noise is inactive.

Figure 6 illustrates the distribution of τt and τc obtained



(a) Noisy speech spectrum (log |Xl
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(c) Hard mask
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(d) Transition mask

Fig. 5: Signal spectrum for the experiment conducted using
IRL-1. High and low power levels are shown in red and blue
respectively, in 5a. The black and white colors stand for the
values 0 and 1, respectively, in 5b, 5c and 5d.
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Fig. 6: Delay distribution generated using the soft, hard and
transition masks on the IRL-1 robot

with each type of masks, when the energy level Elpq is not
zero. Using the soft or the hard masks lead to a distribution
peak at the noise delay τc, while the distribution obtained
with the transition mask reaches its maximum value at the
target delay τt.

The soft mask generates weighted averages of Tpq = 55%
and Cpq = 34%, and the hard mask produces weighted
averages of Tpq = 38% and Cpq = 53%. Using the transition
mask results in Tpq = 79% and Cpq = 16%, significantly
improving robustness to noise compared to the soft and hard
masks.

IV. CONCLUSION

This paper presents a transition noise mask for TDOA
estimation based on the weighted GCC-PHAT to improve ro-
bustness to coherent broadband noise with abrupt transitions.
The transition noise mask relies on the non-stationarity of

speech, and results indicate that it outperforms soft and hard
masks used by the weighted GCC-PHAT approach. It re-
quires the introduction of a small latency, which reveals to be
an acceptable trade-off to avoid invalid localization of sound
sources generated by noise: for instance, the presence of
invalid sound sources could lead to inappropriate responses
of the robot (such as reorienting its head in direction of the
loudest sound source) if additional processing is required to
identify invalid sound sources as noise.

The next step with this work is to integrate the use of
this transition noise mask with the implementation of the
weighted GCC-PHAT in ManyEars. We also plan to use
the information provided by the transition mask to improve
computation in ManyEars, for instance by pausing when
most frequency bins in the transition mask equal to 0.
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