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Long-Term Online Multi-Session Graph-Based SPLAM with
Memory Management

Mathieu Labbé · François Michaud

Abstract For long-term simultaneous planning, local-

ization and mapping (SPLAM), a robot should be able

to continuously update its map according to the dy-

namic changes of the environment and the new areas

explored. With limited onboard computation capabili-

ties, a robot should also be able to limit the size of the

map used for online localization and mapping. This pa-

per addresses these challenges using a memory manage-

ment mechanism, which identifies locations that should

remain in a Working Memory (WM) for online pro-

cessing from locations that should be transferred to

a Long-Term Memory (LTM). When revisiting previ-

ously mapped areas that are in LTM, the mechanism

can retrieve these locations and place them back in WM

for online SPLAM. The approach is tested on a robot

equipped with a short-range laser rangefinder and a

RGB-D camera, patrolling autonomously 10.5 km in

an indoor environment over 11 sessions while having

encountered 139 people.

Keywords SLAM · path planning · pose graph ·
multi-session · loop closure detection

1 Introduction

The ability to simultaneously map an environment, lo-

calize itself in it, and plan paths using this information
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is known as Simultaneous Planning, Localization And

Mapping, or SPLAM (Stachniss, 2009). This task can

be particularly complex when done online on a robot

with limited computing resources in large, unstructured

and dynamic environments. Since SPLAM can be seen

as an extension of Simultaneous Localization And Map-

ping (SLAM), many approaches exist (Thrun et al.,

2005). Our interest lies with graph-based SLAM ap-

proaches (Grisetti et al., 2010), for which combining

a lightweight topological map over a detailed metrical

map reveals to be more suitable for large-scale mapping

and navigation (Konolige et al., 2011).

Two important challenges in graph-based SPLAM

are :

– Multi-session mapping, also known as the kidnapped

robot problem or the initial state problem: when
turned on, a robot does not know its relative po-

sition to a map previously created, making it im-

possible to plan a path to a previously visited loca-

tion. A solution is to have the robot localize itself

in a previously-built map before initiating mapping.

This solution has the advantage of always using the

same referential, resulting in only one map is created

across the sessions. However, the robot must start

in a portion already mapped of the environment.

Another approach is to initialize a new map with

its own referential on startup, and when a previ-

ously visited location is encountered, a transforma-

tion between the two maps can be computed. The

transformations between the maps can be saved ex-

plicitly with special nodes called anchor nodes (Mc-

Donald et al., 2012; Kim et al., 2010), or implicitly

with links added between each map (Konolige and

Bowman, 2009; Latif et al., 2013). This process is

referred to as loop closure detection. Loop closure

detection approaches that are independent of the



2 Mathieu Labbé, François Michaud

robot’s estimated position (Ho and Newman, 2006)

can intrinsically detect if the current location is a

new location or a previously visited one among all

the mapping sessions conducted in the past. Popular

loop closure detection approaches are appearance-

based (Garcia-Fidalgo and Ortiz, 2015), exploiting

the distinctiveness of images of the environment.

The underlying idea is that loop closure detection

is done by comparing all previous images with the

new one. When loop closures are found between the

maps, a global map can be created by combining

the maps from each session. In graph-based SLAM,

graph pose optimization approaches (Folkesson and

Christensen, 2007; Grisetti et al., 2007; Kummerle

et al., 2011; Johannsson et al., 2013) use these loop

closures to reduce odometry errors inside each map

and in between the maps.

– Long-term mapping in dynamic environments. Per-

sistent (Milford and Wyeth, 2010), lifelong (Kono-

lige and Bowman, 2009) or continuous (Pirker et al.,

2011) are terms generally used to describe SLAM

approaches working in such conditions. Continu-

ously updating and adding new data to the map in

unbounded or dynamic environments will inevitably

increase the map size over time. Online simulta-

neous planning, localization and mapping requires

that new incoming data be processed faster than

the time to acquire them. For example, if data are

acquired at 1 Hz, updating the map should be done

in less than 1 sec. As the map grows, the time re-

quired for loop closure detection and graph opti-

mization increases, and eventually limits the size of

the environment that can be mapped and used on-

line.

To address these challenges, we introduce SPLAM-

MM, a graph-based SPLAM with a memory manage-

ment (MM) mechanism. As demonstrated in (Labbe

and Michaud, 2013), memory management can be used

to limit the size of the map so that loop closure detec-

tions are always processed under a fixed time limit, thus

satisfying online requirements for long-term and large-

scale environment mapping. The idea behind SPLAM-

MM is to limit the number of nodes available for

loop closure detection and graph optimization, keeping

enough observations in the map for successful online

localization and planning while still having the ability

to generate a global representation of the environment

that can adapt to changes over time.

The paper is organized as follows. Section 2 reviews

graph-based SLAM approaches that reduce the size of

the map when revisiting the same environment while

continuously adapting to dynamic changes. Section 3

describes the implementation and the operating prin-

ciples associated with the use of memory management

with a graph-based SPLAM approach, which extends

our previous metric-based SLAM approach (Labbe and

Michaud, 2014) with a new planning capability. The

implementation integrates four algorithms: loop clo-

sure detection (Labbe and Michaud, 2013), graph opti-

mization (Grisetti et al., 2007), metrical path planner

(Marder-Eppstein et al., 2010) and a custom topological

path planner. Section 4 presents experimental results of

11 SPLAM sessions using the AZIMUT-3 robot in an

indoor environment over 10.5 km. Section 5 discusses

strengths and limitations of SPLAM-MM, and Section

6 concludes the paper.

2 Related Work

Lifelong appearance-based SLAM requires dealing with

dynamic environments. Glover et al. (2010) present an

appearance-based SLAM approach that had to oper-

ate in different lighting conditions over three weeks.

An interesting observation from their experiments is

that even when revisiting the same locations, the map

still grows: in dynamic environments, the loop closure

detector is sometimes unable to detect loop closures,

duplicating locations in the map. A map management

approach is therefore required to limit map size. In

highly dynamic environments, multiple views of the

same location may also be required for proper local-

ization. Churchill and Newman (2012) present a graph-

based SLAM approach where visual experiences of the

same locations are kept in the map, to increase localiza-

tion robustness to dynamic changes caused for instance

by outdoor illumination conditions. If localization fails

when revisiting an area, new experiences are added to

the map. Even if adding new visual experiences to the

map happens less often over time (as the robot explores

the same location), there is no mechanism to limit this.

Pirker et al. (2011) present a continuous monocular

SLAM approach where new key frames are added to

the map only when the environment has changed, to

keep its size proportional to the explored space. But if

the environment changes very often, there is no mech-

anism to limit the number of key frames over the same

physical location.

Some SLAM approaches can handle dynamic

changes of the environment while limiting the size of

the map for long-term operation. Biber et al. (2005)

present a sample-based representation for maps, to han-

dle changes at different timescales, tracking both sta-

tionary and non-stationary elements of the environ-

ment. The idea is to refresh samples stored for each

timescale with new sensor measurements. Map growth

is then indirectly limited as older memories fade at
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different rates depending on the timescale. Walcott-

Bryant et al. (2012) describe Dynamic Pose-Graph

SLAM (DPG-SLAM), a long-term mapping approach

that detects static and dynamic changes of the environ-

ment through time. To keep consistency of the graph

while reducing its size, nodes that are not observable

anymore are removed. Johannsson et al. (2013) also re-

move unobservable nodes to limit the size of the map

over time when revisiting the same area. Similar nodes

of the graph are merged together while keeping only the

new loop closure detection. However, the graph size is

not bounded when exploring new areas. Krajńık et al.

(2016) present an occupancy grid approach where each

cell in the map estimates its occupancy value depend-

ing on periodical and cyclic changes occurring in the

environment. This increases localization and navigation

accuracy in dynamic environments compared to static

maps, as the predicted map represents the correct state

of the environment at that time of the day (e.g., doors

can change to be opened or closed). The maximum

data kept for each cell is bounded by some parameters

(depending on the smallest and longest cyclic periods

that should be detected), thus keeping memory usage

fixed. However, the approach assumes that the navi-

gation phase always occur in the same environment as

the first mapping cycle, without possibility to extend it

afterward.

These problems of lifelong SLAM are also addressed

in some SPLAM approaches. Milford and Wyeth (2010)

present a solution to limit the size of the map (called

experience map) while revisiting the same area: close

nodes are merged together up to a maximum density

threshold. This approach has the advantage of mak-

ing the map size independent of the operating time,

but the diversity of the observations on each location is

somewhat lost. Konolige et al. (2011) use a view-based

graph SLAM approach (Konolige and Bowman, 2009)

in a SPLAM context. The approach preserves diversity

of the images referring to the same location so that the

map can handle dynamic changes over time, and forget-

ting images limits the size of the graph over time when

revisiting the same area. However, the graph still grows

when visiting new areas.

Overall, these approaches reduce map size when re-

visiting the same area, while continuously adapting to

dynamic changes. This makes them independent or al-

most independent of the operation time of the robot in

these conditions, but they are all limited to a maximum

size of the environment that can be mapped online. The

SPLAM-MM approach deals specifically with this lim-

itation.

Fig. 1 The AZIMUT-3 robot equipped with a URG-04LX
laser range finder and a Xtion PRO LIVE sensor.

3 Memory Management for SPLAM

The underlying representation of SPLAM-MM is a

graph with nodes and links. The nodes contain the fol-

lowing information:

– ID: unique time index of the node.

– Weight: an indication of the importance of the node,

used for memory management.

– Bag-of-words (BOW): visual words used for loop

closure detections. They are SURF features (Bay

et al., 2008) quantized to an incremental vocabu-

lary based on KD-Trees.

– Sensor data: used to find similarities between nodes

and to construct maps. For this paper, our imple-

mentation of SPLAM-MM is using the AZIMUT-3

robot (Ferland et al., 2010), equipped with an URG-

04LX laser rangefinder and a Xtion Pro Live RGB-D

camera, as shown by Fig. 1. The sensory data used

are:

– Pose: the position of the robot computed by its

odometry system (e.g., the value given by wheel

odometry), expressed in (x, y, θ) coordinates.

– RGB image: used to extract visual words.

– Depth image: used to find 3D position of the vi-

sual words. The depth image is registered with

the RGB image, i.e., each depth pixel corre-

sponds exactly to the same RGB pixel.

– Laser scan: used for loop closure transformations

and odometry refinements, and by the Proximity

Detection module.

The links store rigid transformations (i.e., Eucledian

transformation derived from odometry or loop closures)

between nodes. There are four types of links:
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Fig. 2 Memory management and control architecture of SPLAM-MM.

– Neighbor link: created between a new node and the

previous one.

– Loop closure link: added when a loop closure is de-

tected between the new node and one in the map.

– Proximity link: added when two close nodes are

aligned together.

– Temporary link: used for path planning purposes. It

is used to keep the planned path connected to the

current map.

Figure 2 presents a high-level representation of

SPLAM-MM. Basically, it consists of a graph-based

SLAM module with memory management, to which

path planners are added. Memory management involves

the use of a Working Memory (WM) and a Long-Term

Memory (LTM). WM is where maps, which are graphs

of nodes and links, are processed. To satisfy online con-

straints, nodes can be transferred and retrieved from

LTM. More specifically, the WM size indirectly depends

on a fixed time limit T : when the time required to up-

date the map (i.e., the time required to execute the pro-

cesses in the Graph-based SLAM-MM block) reaches

T , some nodes of the map are transferred from WM to

LTM, thus keeping WM size nearly constant and pro-

cessing time around T . However, when a loop closure is

detected, neighbors in LTM with the loop closure node

can be retrieved from LTM to WM for further loop clo-

sure detections. In other words, when a robot revisits

an area which was previously transferred to LTM, it

can incrementally retrieve the area if a least one node

of this area is still in WM. When some LTM nodes are

retrieved, nodes in WM from other areas in the map

can be transferred to LTM, to limit map size in WM

and therefore keeping processing time around T .

Therefore, the choice of which nodes to keep in

WM is key in SPLAM-MM. The objective is to have

enough nodes in WM from each mapping session for

loop closure detections and to keep a maximum num-

ber of nodes in WM for generating a map usable to

follow correctly a planned path, while still satisfying

online processing. Two heuristics are used to establish

the compromise between selection of which nodes to

keep in WM and online processing:

– Heuristic 1 is inspired from observations made by

psychologists (Atkinson and Shiffrin, 1968; Badde-

ley, 1997) that people remember more the areas

where they spent most of their time, compared to

those where they spent less time. In terms of mem-

ory management, this means that the longer the

robot is at a particular location, the larger the

weight of the corresponding node should be. Old-

est and less weighted nodes in WM are transferred

to LTM before the others, thus keeping in WM only

the nodes seen for longer periods of time. As demon-

strated in (Labbe and Michaud, 2013), this heuristic

reveals to be quite efficient in establishing the com-

promise between search time and space, as driven by

the environment and the experiences of the robot.

– Heuristic 2 is used to identifies nodes that should

stay in WM for autonomous navigation. Nodes on a

planned path could have small weights and may be

identified for transfer to LTM by Heuristic 1, thus

eliminating the possibility of finding a loop closure

link or a proximity link with these nodes and cor-
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Map 1!
Map 3!

Map 4!

Last node!
Map 2!

Local map!

Global map!

Fig. 3 Illustration of the local map (inner dashed area) and
the global map (outer dotter area) in multi-session mapping.
Red nodes are in LTM, while all other nodes are in WM. Loop
closure links are shown using bidirectional green arrows.

rectly follow the path. Therefore, Heuristic 2 must

supersede Heuristic 1 and allow upcoming nodes to

remain in WM, even if they are old and have a small

weight.

The Graph-based SLAM-MM block provides two

types of maps derived from nodes in WM and LTM:

– Local map, i.e., the largest connected graph that can

be created from the last node in WM with nodes

available in WM only. The local map is used for

online path planning.

– Global map, i.e., the largest connected graph that

can be created from the last node in WM with nodes

in WM and LTM. It is used for offline path planning.

Figure 3 uses diamonds to represent initial and end

nodes for each mapping session. The nodes in LTM are

shown in red and the others are those in WM. The lo-

cal map is created using only the nodes in WM that

are linked to the last node. The graph linking the last

node with other nodes in WM and LTM represents the

global map (outer dotted area). If loop closure detec-

tions are found between nodes of different maps, loop

closure links can be generated, and the local map can

span over multiple mapping sessions. Other nodes in

WM but not included in the local map are unreachable

from the last node, but they are still used for loop clo-

sure detections since all nodes in WM (including those

in Map 2 for instance) are examined.

The modules presented in Fig. 2 are described as

follows.

3.1 Short-Term Memory Module

Short-Term Memory (STM) is the entry point where

sensor data are assembled into a node to be added to

the map. Similarly to (Labbe and Michaud, 2013), the

role of the STM module is to update node weight based

on visual similarity. When a node is created, a unique

time index ID is assigned and its weight is initialized to

0. The current pose, RBG image, depth image and laser

scan readings are also memorized in the node. If two

consecutive nodes have similar images, i.e., the ratio of

corresponding visual words between the nodes is over a

specified threshold Y , the weight of the previous node is

increased by one. If the robot is not moving (i.e., odom-

etry poses are the same), the new node is deleted. To re-

duce odometry errors on successive STM nodes, trans-

formation refinement is done using 2D iterative-closest-

point (ICP) optimization (Besl and McKay, 1992) on

the rigid transformation of the neighbor link with the

previous node and the corresponding laser scans. If the

ratio of ICP point correspondences between the laser

scans over the total laser scan size is greater or equal to

C, the neighbor link’s transformation is updated with

the correction.

When the STM size reaches a fixed size limit of S

nodes, the oldest node in STM is moved to WM. STM

size is determined based on the velocity of the robot

and at which rate the nodes are added to the map.

Images are generally very similar to the newly added

node, keeping S nodes in STM avoids using them for

appearance-based loop closure detection once in WM.

For example, at the same velocity, STM size should

be larger if the rate at which the nodes are added to

map increases, in order to keep nodes with consecutive

similar images in STM. Transferring nodes with images

very similar with the current node from STM to WM

too early limits the ability to detect loop closures with

older nodes in WM.

3.2 Appearance-based Loop Closure Detection Module

Appearance-based loop closure detection is based on

the bag-of-words approach described in (Labbe and

Michaud, 2013). Briefly, this approach uses a bayesian

filter to evaluate appearance-based loop closure hy-

potheses over all previous images in WM. When a loop

closure hypothesis reaches a pre-defined threshold H, a

loop closure is detected. Visual words of the nodes are

used to compute the likelihood required by the filter. In

this work, the Term Frequency-Inverse Document Fre-

quency (TF-IDF) approach (Sivic and Zisserman, 2003)

is used for fast likelihood estimation, and FLANN (Fast
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Library for Approximate Nearest Neighbors) incremen-

tal KD-Trees (Muja and Lowe, 2009) are used to avoid

rebuilding the vocabulary at each iteration. To keep it

balanced, the vocabulary is rebuilt only when it doubles

in size.

The RGB image, from which the visual words are

extracted, is registered with a depth image. Using (1),

for each 2D point (x, y) in the rectified RGB image, a

3D position Pxyz can be computed using the calibration

matrix (focal lengths fx and fy, optical centres cx and

cy) and the depth information d for the corresponding

pixel in the depth image. The 3D positions of the visual

words are then known. When a loop closure is detected,

the rigid transformation between the matching images

is computed using a RANSAC (RANdom SAmple Con-

sensus) approach which exploits the 3D visual word cor-

respondences (Rusu and Cousins, 2011). If a minimum

of I inliers are found, the transformation is refined us-

ing the laser scans in the same way as the odometry

correction in STM using 2D ICP transformation refine-

ment. If transformation refinement is accepted, then a

loop closure link is added with the computed transfor-

mation between the corresponding nodes. The weight

of the current node is updated by adding the weight

of the loop closure hypothesis node and the latter is

reset to 0, so that only one node with a large weight

represents the same location.

Pxyz =

[
(x− cx) · d

fx
,

(y − cy) · d
fy

, d

]T
(1)

By doing appearance-based loop closure detection

this way, setting H high means that there is less chance

of detecting false positives, but at the cost of detect-

ing less loop closures (Labbe and Michaud, 2013). For

SPLAM-MM,H can be set relatively low to detect more

loop closures because false positives that are geometri-

cally different will be rejected by the rigid transforma-

tion computation step (i.e., the 3D visual word corre-

spondences and 2D ICP transformation refinement).

3.3 Proximity Detection Module

Appearance-based loop closure detection is limited by

the perceptual range of the sensory data used. For in-

stance, when the robot is revisiting areas in opposite di-

rection, the RGB-D camera on AZIMUT-3 is not point-

ing in the same direction compared to when the nodes

were created, and thus no appearance-based loop clo-

sures can be detected. This also happens when there

are not enough visual features under the depth range

of the RGB-D camera (e.g., white walls or long halls).

Simply relying on appearance-based loop closure detec-

tions for map corrections would then limit path plan-

ning capabilities, and make navigation difficult in such

conditions. Figure 4a illustrates a situation where the

robot is in a hall coming back to its starting position

in reverse direction. Setting a goal at the starting posi-

tion would make the planner fail because no loop clo-

sures could be found to correct the odometry, resulting

in having a wall directly placed on the starting posi-

tion. One solution would be to have the robot visit the

nodes of the graph backward so loop closures could be

detected to correct the map, and ultimately be able

to reach the starting position. However, it is inefficient

and unsafe if the robot does not have sensors pointing

backward. To deal with such situations, the Proximity

Detection module uses laser rangefinder data to correct

odometry drift in areas where the camera cannot de-

tect loop closures. With a field of view of more than

180◦, the laser scans can be aligned in reverse direc-

tion, generating proximity links. As laser scans are not

as discriminative as images, proximity detection is re-

stricted to nodes of the local map located around the

estimated position of the robot. Figure 4b illustrates

the result.

Figure 5 illustrates how nodes located close to the

robot are selected by the Proximity Detection module.

Only nodes in the local map with their pose inside ra-

dius R centered on the robot are used. Nodes in STM

are not considered in order to avoid adding useless links

with nodes close by: this would increase graph optimiza-

tion time without adding significative improvements of

the map. The nodes are then segmented into groups

with nodes connected only by neighbor links. A group

must have its nearest node from the robot inside a fixed

radius L defining close-by nodes (with L < R) to be

considered for proximity detection, to keep the length

of the resulting proximity links small for path planning.

Note that Appearance-based Loop Closure Detection

is done before Proximity Detection, thus if the near-

est node has already a loop closure with the new node,

the group is ignored. Proximity detection is then ap-

plied separately on each group of nodes by doing the

following steps:

1. A rigid transformation between the nearest node

of each group and the new node added to map is

computed as in Section 3.2, and if it is accepted, a

proximity link is added between the corresponding

nodes, and the group of nodes is ignored for step

2. These links are referred as visual proximity links

because visual words are used in the transformation

estimation.

2. To avoid having to compare multiple nodes with

very similar laser scans (and thus to save computa-
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a)!

b)!

Fig. 4 Illustration of the role of the Proximity Detection module. On the left are the raw laser scans, the blue dot is the
starting position, and on the right the corresponding occupancy grid map at 0.05 m resolution (black, light gray and dark
gray areas are occupied, empty and unknown spaces, respectively). In a), the yellow circle on the right locates the problematic
situation: after the second traversal, the first nodes of the graph are located exactly over the wall, making it impossible to
plan a path (red arrow on the right) to return to the starting position. In b), proximity links are detected using only the laser
scans, and the local map can then be correctly optimized.

tion), only the more recent node among those in

the same fixed small radius L (centered on each

node) is kept along the nodes in a remaining group.

Then for each group, the laser scans of the nodes

are merged together using their respective pose. 2D

ICP transformation refinement is done between the

merged laser scans and the one of the new node.

If the transformation is accepted, a new proximity

link with this transformation is added to the graph

between the new node and the nearest one in the

group.

3.4 Graph Optimization Module

TORO (Tree-based netwORk Optimizer) (Grisetti

et al., 2007) is used for graph optimization. When loop

closure and proximity links are added, the errors de-

rived from odometry can be propagated to all links,

thus correcting the local map. This also guarantees that

nodes belonging to different maps are transformed into

the same referential when loop closures are found.

When only one map exists, it is relatively straight-

forward to use TORO to create a tree because it only

has one root. However, for multi-session mapping, each

map has it own root with its own reference frame. When

loop closures occur between the maps, TORO cannot

optimize the graph if there are multiple roots. It may

also be difficult to find a unique root when some of

the nodes have been transferred in LTM. As a solution,

our approach takes the root of the tree to be the latest

a)	 b)	

c)	 d)	

R

L

Fig. 5 Illustration of how proximity detection works. In a),
the larger dashed circle represents the radius R used to deter-
mine close-by nodes, and the smaller dashed circle defined by
L is used to limit the length of the links to be created. The
empty dots are nodes for which the laser scans are not used,
either because they are outside the radius R, they are too
close from each other or they are in STM. In b) and c), nodes
in the radius R from the two segmented groups of nodes are
processed for proximity detection. In d), proximity links are
added (yellow), and after graph optimization, the groups of
nodes are connected together and the respective laser scans
are now aligned.
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node added to the local map, which is always uniquely

defined across intra-session and inter-session mapping.

All other poses in the graph are then optimized using

the last odometry pose as the referential.

3.5 Path Planning Modules

Memory management has a significant effect on how to

do path planning online using graph-based SLAM, for

which the map changes almost at each iteration and

with only the local map accessible while executing the

plan. This differs from approaches that assume that the

map is static and/or that all the previously visited loca-

tions always remain in the map. In this paper, SPLAM-

MM uses two path planners: a Metrical Path Planner

(MPP) and a Topological Path Planner (TPP).

3.5.1 Metrical Path Planning Module

MPP receives a pose expressed in (x, y, θ) coordinates,

and uses the local map to plan a trajectory and to make

the robot move toward the targeted pose while avoid-

ing obstacles. Our MPP implementation exploits the

ROS navigation stack (Marder-Eppstein et al., 2010) to

compute trajectories expressed as a sequence of veloc-

ity commands (expressed as twists) sent to the robot’s

Motion Controller module. A global Costmap is used

to plan a trajectory to a targeted pose. MPP creates

the global Costmap from an occupancy grid created us-

ing the assembled laser scans from the latest local map.

Each time the local map is updated, the occupancy grid

is re-assembled and the trajectory is re-planned. MPP

also uses a local Costmap for its Dynamic Window Ap-

proach (DWA) (Fox et al., 1997) to handle dynamic

obstacles for collision avoidance. The local Costmap is

created directly from sensor readings. To create the lo-

cal Costmap, only using the laser rangefinder for obsta-

cle detection revealed to be insufficient: while the laser

range finder can detect most of the obstacles (e.g., walls,

people, table legs), it is located 40 cm above the floor

and all obstacles under this height cannot be detected.

Therefore, the depth image from the RGB-D camera

is also used to detect these small obstacles and to add

them to the local Costmap. Figure 6 shows an example

where combining laser scans and RGB-D data creates a

more robust and a safer local Costmap for navigation.

Note that segmentation of the point cloud generated

from the depth image is required to be able to add or

clear small dynamic obstacles below the RGB-D cam-

era. To segment the ground, all points with normal par-

allel to z-axis (up to an angle Z) are labeled as ground.

Then, all other points under a maximum height U are

labeled as obstacles. This method would also make the

robot capable of operating on uneven terrain.

3.5.2 Topological Path Planning Module

When TPP receives a goal identified by a node ID from

a user (or a high-level module like a task planner, or

in this paper the Patrol module), the global map is

provided by the graph-based SLAM-MM module, and

a topological path is computed to reach this goal. The

topological path is a sequence of poses, expressed by

their respective node IDs, to reach the goal. This step

must be done offline or when the robot is not moving

because all nodes linked to the current local map should

be retrieved from LTM to build the global map.

To choose which nodes to use for navigation, TPP

computes a path from the current node to the goal node

using Djikstra algorithm (Dijkstra, 1959). The choice

of using Dijkstra over A* is to avoid global graph op-

timization, which is time consuming, to know the dis-

tance to goal required by A*. Dijkstra can also be com-

puted directly when fetching the global map from LTM.

Similar to (Valencia et al., 2013), to avoid losing track

of the planned path, TPP prefers paths traversed in

the same direction (e.g., where the camera is facing the

same direction than on the nodes on the path) over

shortest paths. This increases localization confidence:

loop closure detection and visual proximity detection

are more reliable than proximity detection using only

laser scans because of their double verification (3D vi-

sual word correspondences and 2D ICP transformation

refinement). To embed this preference in Djikstra, the

search cost is angular-based instead of distance-based,

i.e., it finds the path with less orientation changes when

traversing it in the forward direction.

Then, TPP selects the farthest node on the path

in the local map and sends its pose to MPP. While

MPP makes the robot navigate to its targeted pose,

TPP indicates to the graph-based SLAM-MM mod-

ule which upcoming nodes on the topological path is

needed, expressed as a list of node IDs from the lat-

est node reached on the path to the farthest node in-

side the radius R (to limit the size of the list). The re-

quired nodes are identified by the graph-based SLAM-

MM module with Heuristic 2 either to remain in WM or

to be retrieved from LTM to extend the local map. The

maximum number of retrieved nodes per map update is

limited to M because this operation is time consuming

as it needs to load nodes from LTM. M is set based on

the hardware on which LTM is saved and according to

the maximum velocity of the robot: for instance, if the

robot is moving at the same speed or less as when it

traversed the same area the first time, M = 1 would
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(a) (b) (c)

Fig. 6 Example of obstacle detection using the laser rangefinder and the RGB-D camera. The red dots on the chair show
what is detected using the laser rangefinder data. The cyan area is derived from the obstacle projection on the ground plane
up to robot’s footprint radius, delimiting where the center of the robot should not enter to avoid collisions. In a), only the
laser rangefinder data are used and the chair’s wheels are not detected, making unsafe for the robot to plan a path around the
chair. In b), the point cloud generated from the camera’s depth image is used and the chair’s wheels are detected (shown by
the orange dots), increasing the cyan area (and consequently the area to avoid colliding with the chair). Illustration c) presents
a view from the RGB-D camera where the segmented ground is shown in green and the obstacles in orange.

suffice to retrieve nodes on the path without having to

slow down to wait for nodes not yet retrieved.

Extending the local map with nodes of the topo-

logical path is important for the robot to localize it-

self using the Appearance-based Loop Closure Detec-

tion module or using the Proximity Detection module,

making it able to follow the topological path appro-

priately. As the robot moves and new local maps are

created, TPP always looks for the farthest node of the

topological path that can be reached in the local map

to update the current pose sent to MPP module. If new

nodes are retrieved from LTM on the topological path,

then the farthest pose is sent to MPP. TPP also de-

tects changes in the local map after graph optimization

(e.g., when new loop closures are detected): if so, the

updated position of the current pose is sent to MPP.

Up to a ratio O of the WM size, nodes identified by

the planner and located in the radius R from the robot’s

current position are immunized to be transferred, with

R being the sensor range.

Figure 7 presents an example of the interaction be-

tween MPP and TPP to reach a goal G. While the robot

is moving, TPP always sends the farthest pose P of the

node on the topological path (purple links) in the lo-

cal map. An occupancy grid is assembled with the laser

scans contained in the nodes of the local map. MPP

uses this occupancy grid to plan a trajectory (yellow

arrow) to P. To keep the WM size constant, as nodes

are retrieved from LTM on the path, older nodes are

transferred to LTM. To follow the path appropriately,

proximity links are detected to correct the map as the

robot moves, otherwise the situation explained by Fig.

4a would happen.

TPP iterates by sending poses until the node of the

goal (under a goal radius D expressed in m) is reached.

Finally, handling situations where the environment has

changed too much for proper localization must be taken

into consideration. If no loop closures and proximity de-

tections occur when following a path, a temporary link

is added between the current node and the closest one

in the path so that the topological path is always linked

to the current node in the local map. Without this link,

if previous nodes between the current node and those of

the topological path are transferred to LTM, the local

map would be divided and the nodes of the path would

not be in the local map anymore. This temporary link

is removed when a new link is added between the cur-

rent node and the closest one in the path or when the

goal is reached. If the robot has not reached the cur-

rent pose set to MPP after F iterations of SPLAM-MM

(e.g., MPP cannot plan to the requested pose because

of the presence of a new obstacle or because the robot

cannot localize itself on the path), TPP chooses another

pose on the upcoming nodes and sends it to MPP. If all

the upcoming nodes cannot be reached, TPP fails and

sends a status message to its connected modules so that

they can be notified that the goal cannot be reached.



10 Mathieu Labbé, François Michaud

P"

G"

(a)

P"

G"

(b)

P"

G"

(c)

P"

G"

(d)

P"

G"

(e)

P"

(f)

Fig. 7 Interaction between TPP and MPP for path planning. The goal is identified by the purple G. The topological path is
shown with purple links. The dashed yellow arrow is the trajectory computed by MPP to the targeted poses designated by the
yellow P. Light gray, dark gray and black areas of the occupancy grid represent free, unknown and occupied cells, respectively.
Blue nodes are in WM, and red nodes are in LTM. Yellow links are proximity links.

3.6 Patrol Module

We implemented the Patrol module to generate naviga-

tion goals, referred to as waypoints so that the robot is

programmed to continuously patrol an area. The Patrol

module receives waypoints as inputs and sends them

successively to TPP. By examining TPP’s status mes-

sages, Patrol can know when a goal is reached or if TPP

has failed. Whenever the status indicates that the goal

is reached or not, the Patrol module sends the next

waypoint, and restart to the first one once the whole

list has been processed.

4 Results

Table 1 shows the parameters used for the trials1. The

acquisition time A used is 1 sec (i.e., the map update

rate is 1 Hz), which set the maximum online time al-

lowed to process each node added to the map. For

the trials, T is set to 200 ms to limit CPU usage for

SPLAM-MM to around 20%, to make sure that higher

1 In comparison with (Labbe and Michaud, 2013), T =
Ttime, S = TSTM and Y = Tsimilarity.

frequency modules (acquisition of Sensor Data acquisi-

tion and MPP) can run at their fixed frequency of 10

Hz. The robot is relatively moving at the same velocity

during the trials, and therefore M is fixed to 2 to make

sure that nodes on a planned path are retrieved fast

enough to avoid having the robot wait for nodes still in

LTM. All computations are done onboard on the robot,

which is equipped with a 2.66 GHz Intel Core i7-620M

and a 128 GB SSD hard drive (on which the LTM is

saved).

To define the area over which the robot had to pa-

trol, during session 1 we first teleoperated the robot

and defined four waypoints (WP1 to WP4). There were

no people in the environment during the teleoperation

phase. After reaching WP4, the autonomous navigation

phase is initiated by sending the waypoints to the Pa-

trol module. Figure 8 illustrates the four waypoints on

the global map and the first planned trajectory by TPP

(purple path) from the current position of the robot

(WP4) to WP1. To come back to WP1, the robot had

to follow the path in the opposite direction from when

these nodes were created. Proximity detection made

it able to follow the path appropriately. To see more

clearly the effect of proximity links, Fig. 9 shows the
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Table 1 Parameters used for the trials

Acquisition time A 1 sec

ICP correspondence ratio C 0.3

Radius of the goal area D 0.5 m

TPP iterations before failure F 10

Loop closure hypothesis threshold H 0.11

Minimum RANSAC visual word inliers I 5

Close nodes radius L 0.5 m

Maximum retrieved close nodes M 2

Heuristics 2 close-by nodes ratio O 0.25

Laser scan range R 4 m

STM size S 20

Time limit T 200 ms

Maximum obstacle height U 0.4 m

Similarity threshold Y 0.3

Ground segmentation maximum angle Z 0.1 rad

WP4	
WP3	

WP2	

WP1	

Battery Charger	

Fig. 8 Waypoints WP1 to WP4 identified on the global map.
The purple path is the first path planned by TPP from the
WP4 to WP1.

maps after reaching WP1 with and without graph op-

timization. Navigation would not have been possible

without proximity links: the local map would have look

like the map in (b) without the yellow links because no

appearance-based similarities would have been found

with nodes from the map on the planned path. When

reaching WP1, the Patrol module sends the next way-

point (WP2), making the robot continue patrolling.

Every 45 minutes or so of operation, the robot was

manually shutdown and moved to the battery charger

near WP1. Once recharged, a new session of SPLAM-

MM was initiated, creating a new node in STM with

odometry reset, while preserving the nodes in WM

and LTM. As the robot was initialized in the area of

WP1 for each session, loop closures were found, con-

WP1!
WP1!

WP2!
WP2!

WP3!

WP3!

WP4! WP4!

(a)

WP1!
WP1!

WP2!
WP2!

WP3!

WP3!

WP4! WP4!

(b)

Fig. 9 Global maps, optimized and not optimized, after
reaching WP1. Yellow and red links are proximity and loop
closure links, respectively.

necting and optimizing the new map with nodes cre-

ated from previous sessions, and allowing the Patrol

module to provide waypoints as navigation goals to pa-

trol the area. Overall, 11 indoor mapping sessions were

conducted, for a total distance of 10.5 km lasting 7.5

hours of operation spent over two weeks. The robot did

111 patrolling cycles (i.e., traversing from WP1 through

WP2, WP3, WP4 and coming back to WP1). The ses-

sions were conducted during office hours, with people

walking by. A total of 139 people were encountered by

the robot while patrolling. Figure 10 illustrates the dy-

namic conditions and some of the obstacles that the

robot had to deal with during the trials.

The main goal of the trials is to see how SPLAM is

influenced by memory management over long-term op-

eration, only having the local map for online process-

ing. This can be illustrated by looking at the influences

of memory management on SPLAM, interactions be-

tween TPP and MPP, and the influences of LTM on

TPP. As the robot is continuously adding new nodes,

the trials also demonstrate how SPLAM-MM works in

an unbounded environment.

4.1 Influences of MM on SPLAM

Figure 11 shows a typical navigation result when reach-

ing the time limit T , thus limiting the size of the local

map used for online navigation. This example shows

the path planned between WP4 and WP1 after 4.7

hours of operation. The local maps used for online plan-

ning, localization and mapping are shown for different

time steps along the trajectory. At t = 17031 sec, the

planned path had 67 nodes and was 33 m long. It took

1.3 sec to be generated by TPP and to have the first

pose on the path sent to MPP. The laser scan range R

is delimiting the upcoming nodes on the path provided

by TPP. As the robot navigates in the environment,

the farthest available pose in the local map on the path

(end of the cyan line) is sent from TPP to MPP. Up-
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a)! b)! c)! d)! e)!
Fig. 10 Events that occurred during the trials: a) open and closed doors between traversals; b) camera exposure that led to
the extraction of different visual features, making it difficult to find loop closures; c) someone opening a door while the robot
is navigating; d) people walking around or blocking the robot; e) featureless images on which loop closure detection cannot
work.

t = 17060 sec!t = 17053 sec!t = 17031 sec! t = 17068 sec!

t = 17075 sec! t = 17081 sec!

t = 17108 sec!

t = 17095 sec!

WP4! WP4!
WP4!

WP4!

WP4!
WP4! WP4!WP1!

WP1! WP1! WP1!
WP1!

WP1! WP1! WP1!

Fig. 11 Example of the effect of memory management when travelling from WP4 to WP1 after 4.7 hours of operation. The
path planned is shown in purple. The small colored icon represents the robot position at each time step. The dotted circle
around the robot position illustrates the laser scan range R. The cyan lines represent the upcoming nodes on the planned path.

coming nodes, if they are not in WM, are retrieved to

make the robot able to localize itself (though loop clo-

sures and proximity detections) on the path. Looking

at how the local map changes in these snapshots, notice

how starting from t = 17075 sec, the initial portion of

the path is transferred in LTM to keep the size of the

WM relatively constant. At t = 17108 sec, the robot

reached WP1.

Figure 12 compares the images between each way-

point and the final position of the robot at the way-

points. The robot successfully reached the waypoints

(within D as the goal radius) 445 out of 446 times. For

WP2, WP3 and WP4, the robot always came from be-

hind the waypoint, and as soon the robot reached the

waypoint within a D radius, TPP detected that the goal

was reached. This explains why all the poses are behind

the waypoints but inside the goal radius D. Similarly,

for WP1, the robot came from behind from a slightly

different direction. Spurious poses on the right part of

the circle are those where there was an obstacle that

caused the robot to avoid it, making it reach the way-

point from a different direction. The one time the robot

failed to reach a waypoint is because someone blocked

the robot for a long time, making TPP failed after F at-
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tempts of reaching the upcoming nodes: a failure status

message was then sent to the Patrol module to provide

the next waypoint. The person left soon after the next

waypoint was sent, and the robot reached the new way-

point provided.

Figure 13 illustrates the evolution of the number

of nodes in WM and online processing time over the 11

mapping sessions. Processing time includes all SPLAM-

MM modules except MPP which was running concur-

rently on a separate process (its processing time is only

dependent of the local map size). As explained in Sec-

tion 3.5.2, TPP occurs offline and only when a new

goal is received from the Patrol module, and is exam-

ined in Section 4.3. Fig. 13a illustrates that the number

of nodes in WM and the local map was identical until T

sec was reached. After that, nodes were transferred to

LTM to limit the WM size for online processing, which

is satisfied as shown by Fig. 13b. Processing time also

remained well under the acquisition time A.

4.2 TPP-MPP Interactions

To illustrate with a concrete example of the situation

described in Fig. 7, Fig. 14 presents an example of con-

secutive poses sent by TPP to MPP while nodes from

LTM are retrieved for the planned path. The red ar-

row shows the pose of the farthest node on the path

(the direction of the arrow shows the orientation of

the pose). The red line represents the trajectory com-

puted by MPP from the current position of the robot

to its targeted pose, combined with obstacle avoidance.

The blue lines represent the local map. In Fig. 14a,

the targeted pose is on a node traversed backward (as

shown by the arrow pointing backward). Between a)

and b), the local map was updated with nodes loaded

from LTM of the topological path. The targeted pose

was updated farther on the path and at the same time,

the occupancy grid was extended to previously mapped

areas and MPP recomputed its trajectory. The robot

could then move farther toward its goal and the nodes

retrieved were used for proximity detection to correctly

follow the planned path.

To also illustrate the importance of obstacle detec-

tion described in Fig. 6, Fig. 15 presents an example

where an unexpected obstacle was encountered: as the

laser rangefinder is 0.4 m above the ground, the forklift

could only be detected using the RGB-D camera. MPP

planned a slightly different path (orange) that the one

planned by TPP (pink) to avoid the obstacle.

Goal

(a)

Goal

(b)

Fig. 14 Example of poses sent by TPP to MPP while nodes
from LTM are retrieved for the planned path. The goal of the
path is somewhere outside these images in the direction shown
by Goal. The bottom left images shows the actual RGB image
from the RGB-D camera. The blue lines are nodes and links
of the local map. The red line is the computed trajectory from
MPP using the local map’s occupancy grid from its current
pose (red arrow). The RGB point cloud and the occupancy
grid are created using RGB-D images and laser scans stored
in nodes from the local map, respectively. In a), the robot is
following the red trajectory. In b), some nodes are retrieved
from LTM and a new trajectory is computed to move further
on the path toward the goal.

4.3 Influences of LTM on TPP

Although Fig. 13 demonstrates that SPLAM-MM is

able to satisfy online constraints on a map increasing

linearly in size (i.e., not bounded to a maximum size of

environment), memory used by LTM and consequently

TPP planning time increase linearly. For example, at

the end of experiment, LTM contains 24002 nodes and

113368 links. All raw sensor data in the nodes were

also saved in the LTM’s database (for debugging and

visualization purposes), including RGB image (JPEG

format) and depth image (PNG format) of each node.

The final database took 6.7 GB of hard drive space.

With as many links at the end of the experiment, TPP

required 2.4 sec to compute a plan to the next waypoint.

In term of memory usage and planning time, LTM must

be somewhat limited over time when revisiting the same

areas.

As a solution to limit LTM memory growth, nodes

from STM can be merged when moved to WM if they

have loop closure and/or visual proximity links. We
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Fig. 12 Comparison of the corresponding images between the waypoint (left image) and at the last pose reached on one of
the planned path (right image) for the waypoints. The top view grid shows the laser scan readings and referentials of the
waypoint’s nodes (at the origin of the grid) and the final node. The zoomed portions represent the final poses of the robot
(represented by blue dots), for all paths planned for each waypoint. The circle represents the goal radius D, and the grid’s
cells used for visualization have a width of 1 m.
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Fig. 13 Memory size and total processing time over the 11 mapping sessions.
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Fig. 15 Example where MPP plans a slightly different path
(orange) than the one provided by TPP (pink). The yellow
dot is the current position of the robot and the lower right
image is the corresponding RGB image.

studied this possibility by adding a graph reduction al-

gorithm to STM, to remove the node from the graph

and to add its neighbor links to the corresponding old

node(s). Algorithm 1 summarizes the approach used to

maintain the graph at the same size (same number of

removed links and nodes than added) if there are many

successive nodes with loop closure or visual proxim-

ity links. If two nodes of a same location do not have
similar images (i.e., they don’t have loop closure or vi-

sual proximity links), they will not be merged, thus still

keeping a variety of different images representing the

same location. To make sure nodes to be merged are

still in WM (to avoid to modify the LTM), nodes hav-

ing a link to a node in STM are identified as nodes that

must stay in WM (similarly to Heuristic 2). Figure 16

shows how links are merged between the node moved to

WM and its corresponding node(s) linked by loop clo-

sure link. In a), the purple node has two loop closure

links. On graph reduction, its two neighbor links (blue)

are merged with the loop closure links (red) by multi-

plying the corresponding transformations together, cre-

ating merged neighbor links (orange). In this case, the

same number of links are added than those removed but

one node is removed. In b), the green node has only one

neighbor link (with the cyan node), then the loop clo-

sure link is only merged with it, creating only one link

and four are removed. Merged neighbor links are ig-

nored to be merged again to limit the number of links.

STM	
WM	

Graph Reduction	STM to WM	
WM	

STM	a)	

b)	

c)	

Fig. 16 Three examples illustrating how the graph reduc-
tion algorithm works. Blue, red and orange links represent
neighbor, loop closure and merged neighbor links, respec-
tively. Black links and white nodes are those removed using
graph reduction. The left column shows the rightmost node
(the oldest) of STM moved to WM. Then on the right column,
this node is removed if it has a loop closure link.

In c), the cyan node does not have any loop closure and

no graph reduction is done.

Algorithm 1 Graph Reduction
1: o← node moved to WM
2: m← loop closure and visual proximity links of o
3: if m is not empty then
4: n← neighbor links of o
5: for all m in m do
6: om ← node pointed by m
7: for all n in n do
8: on ← node pointed by n
9: t← m−1·n

10: Add t to om
11: Add t−1 to on
12: end for
13: end for
14: Remove o from the graph
15: end if

To test this idea, data from the 11 sessions were

processed again to test the influences of the graph re-

duction approach using real data acquired by the robot.

Note that even though graph reduction was validated

offline, we carefully monitored the experiment manually

to make sure that the robot could still localize itself cor-

rectly on the planned paths.

Figure 17 shows a comparison of the final global

map without and with graph reduction. The zones with

less blue links indicate that there were many nodes

merged. The zones with more blue links are where nodes

were not merged, because of a lack of features or be-

cause of obstacles: the robot was not able to localize

itself perfectly on the paths every time, thus adding

new nodes to the map.
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a)!

b)!

Fig. 17 Comparison between the global maps a) without
graph reduction (24002 nodes and 113368 links); b) with
graph reduction (6059 nodes and 18255 links).

Figure 18 illustrates TPP planning time correspond-

ing to LTM size with and without graph reduction. As

the LTM became larger, TPP planning time increased:

with graph reduction, TPP planning time was reduced

by 89% for the last path planned (272 ms instead of 2.4

sec). Figure 19 illustrates hard drive usage with and

without graph reduction. Extrapolating linearly mem-

ory usage with a 100 Gb hard drive, the robot could

navigate online approximately 110 hours without graph

reduction before filling up the hard drive. When debug-

ging data (not used for navigation) are not recorded in

the database, this estimate would increase to approx-

imately 33 days (800 hours). This means that if the

robot is always visiting new locations at a mean velocity

of 1.4 km/h (as in this experiment), it could travel up

to 1120 km to map environments online. When graph

reduction is used, debugging data are not saved and

having the robot always revisiting the same areas like

in this experiment, it could do SPLAM continuously for

about 130 days before reaching the hard drive capacity.

5 Discussion

In terms of processing time, results show that SPLAM-

MM is able to satisfy online processing requirements in-

dependently of the size of the environment, by transfer-

ring in LTM portions of the map which then cannot be

used for loop closure detection, proximity detection and

graph optimization. Results show also that path fol-

lowing is still possible in such conditions by incremen-
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Fig. 18 Comparison of TPP planning time and LTM size,
with (blue) and without (red) graph reduction. The peaks in
the zoomed section show more precisely when a planning is
done (when a waypoint is reached).
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Fig. 19 Comparison of hard drive usage with (blue) and
without (red) graph reduction. The dashed curves represents
results without saving in database the debugging data (i.e.,
raw RGB and depth images).

tally retrieving locations on the planned path. Thus, as

shown in Section 4.3, the current hardware limitation

of the system for long-term continuous SPLAM is hard

drive capacity, not computation power.

To successfully follow a path, results demonstrate

the importance of adding loop closure and/or proxim-

ity links with nodes on the planned path to localize the

robot in the map. In our trials, the robot navigated in-

door where static structures (e.g., walls) were most of

the time visible using the laser rangefinder. However, in

large empty spaces where the laser rangefinder would

not be able to perceive nearby structures, it would be

difficult for the robot to follow a path if appearance-

based loop closure detection and visual proximity de-

tection do not occur. A laser rangefinder with larger

perceptual range or a 3D LIDAR sensor like the Velo-

dyne could be used to increase perceptual range. For

a lower cost solution, using a camera facing backward

could be useful to allow the robot to detect similari-
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ties in images when traversing a path in opposite direc-

tion (Carrera et al., 2011). Without adding new sensors,

TPP could also stop sending new poses when no loop

closure links or proximity links occur for a while. If no

loop closures were found over the next few meters, it

would be possible to wait for the robot to rotate at

this location so that it can look backward, increasing

its chance to detect a loop closure to correct its po-

sition on the planned path and then generate a new

pose. A similar recovery approach is presented in (Mil-

ford and Wyeth, 2010), where an exploration phase is

triggered to re-localize the robot when failing to follow

the planned path. Also, to be more robust to dynamic

environments where there are cyclic changes over time,

TPP could select nodes that match better the current

time of the day rather than the most recent ones, to in-

crease localization success as in (Krajńık et al., 2016).

In comparison with large empty environments, those

in which a lot of dynamic changes occur (e.g., navigat-

ing through a crowd) would also make simultaneous

planning and localization more difficult. For instance,

mapping the area in session 1 without people walk-

ing by helped the robot acquire the static structures

of the environment since they were not hidden by peo-

ple. These static structures facilitate localization when

the robot comes back to these areas later one. If these

static structures were previously occluded, they would

be added to the map as the robot comes back to these

areas (obviously if people are no longer in the robot’s

field of view). If people partially occlude the robot’s

sensors over a long distance, localization would still be

possible but would occur less frequently.

For online multi-session mapping with our memory

management approach, the worst case is when all nodes

of a previous map are transferred to LTM before a loop

closure is detected (Labbe and Michaud, 2013). This

results in definitely ignoring the previous map and dis-

abling at the same time the ability to plan paths to

a location in it. To avoid this problem, an additional

heuristic could be to keep in WM at least one discrim-

inative node for each map. However, if the number of

mapping sessions becomes very high (e.g., thousands of

sessions), these nodes would definitely have to be trans-

ferred in LTM to satisfy online processing requirements.

A strategy that makes the robot explore potential paths

to link maps together would then be useful, and maps

that could not be linked would eventually be unretriev-

able.

In the trials conducted, no invalid loop closures were

detected, avoiding to corrupt the map with erroneous

loop closure links. If this happens, graph optimization

approaches such as (Latif et al., 2013; Sunderhauf and

Protzel, 2012; Lee et al., 2013) deal with possible invalid

matches, and could be used to increase robustness of

SPLAM-MM. However, these approaches assume that

the whole global map is available online, which is not

the case here. They could be still used offline at the end

of a session.

As shown by Fig. 15, MPP in SPLAM-MM allows

the robot to find an alternative path to reach the tar-

geted pose when possible. However, if the alternative

path is outside the local map, re-planning with TPP is

required. Some paths may be also blocked temporary or

permanently by some dynamic or new static obstacles.

An approach similar to (Konolige et al., 2011) could be

used to identify some links as blocked so that TPP can-

not plan a path using them. The Patrol module could

also manage waypoints that can and cannot be reached.

Finally, the graph reduction approach can reduce

significantly the number of nodes and links saved in

LTM to reduce TPP planning time. However, because

of dynamic events or the lack of features (e.g., Fig.

10e), new nodes and links will inevitably be added to

LTM over time when revisiting the same areas. As an

improvement, nodes with featureless image could be

merged through a maximum density threshold like in

(Milford and Wyeth, 2010), as they cannot be used for

loop closure detection. After applying graph reduction

on the experimental data, there are still 3068 featureless

nodes of 6059 nodes in the global graph, which would

reduce by about 50% the remaining graph. However,

even by limiting the rate at which the LTM grows, a

continuous SLAM approach in unbounded dynamic en-

vironments will always add new data over time. A com-

plementary strategy would be to definitely forget some

parts of the global map, at the cost of not being able

to return to some locations.

6 Conclusion

By limiting the nodes of the map available online in

WM for loop closure detection, proximity detection and

graph optimization, results presented in this paper sug-

gest that the proposed graph-based SPLAM-MM ap-

proach is able to meet online processing requirements

needed for simultaneous mapping, localizing and plan-

ning in multi-session conditions. SPLAM-MM is tightly

based on appearance-based loop closure detection, al-

lowing it to naturally deal with the initial state prob-

lem of multi-session mapping. To successfully localize

on a planned path through areas previously transferred

in LTM, memory management allows SPLAM-MM to

deal with the necessity of retrieving upcoming nodes on

the path in WM. Our code is open source and available

at http://introlab.github.io/rtabmap.
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In future works, more robust failure recovery ap-

proaches will be examined to test SPLAM-MM in dy-

namic environments where the paths could often be

blocked (temporally or permanently). We also plan to

study the impact of autonomous coverage and explo-

ration strategies, especially how it can actively direct

exploration based on nodes available for online map-

ping. This could be also useful to conduct longer ex-

periments at larger scale.
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