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Abstract— Recognizing a person from a distance is impor-
tant to establish meaningful social interaction and to provide
additional cues regarding the situations experienced by a
robot. To do so, face recognition and speaker identification
are biometrics commonly used, with identification performance
that are influenced by the distance between the person and
the robot. This paper presents a system that combines these
biometrics with human metrology (HM) to increase identifica-
tion performance and range. HM measures are derived from
2D silhouettes extracted online using a dynamic background
subtraction approach, processing in parallel 45 front features
and 24 side features in 400 ms compared to 38 front and 22
side features extracted in sequence in 30 sec by using the
approach presented by Lin and Wang [1]. By having each
modality identify a set of up to five possible candidates, results
suggest that combining modalities provide better performance
compared to what each individual modality provides, from a
wider range of distances.

I. INTRODUCTION

Being able to identify people is a key element in creating
personalized interactions [2], and the same certainly holds
for human-robot interaction (HRI). People identification is
essential to greet a person, to store information regarding an
individual or to direct conversation towards topics of interest.
Identification of humans by measurable characteristics is
referred to as biometrics. Hard biometric identifiers are
associated to permanent and distinct traits unique to each
individual, such as face, voice, fingerprint, iris, DNA, etc.
[3], while soft biometric traits are not (e.g., colour of eye,
hair, beard or skin, height and weight, body shape, clothes)
[4], [5] and require less computation power to process [4].

In HRI, face recognition is one of the most common hard
biometrics used [6], [7], [8], [9]. Unfortunately, face recogni-
tion approaches are sensitive to illumination conditions and
the quality (size, orientation, segmentation) of the region of
interest to analyze [10]. Speaker identification is reliable in
quiet environments or when using a microphone in close
proximity of the person, conditions that are uncommon in
natural settings [11]. Other hard biometric identifiers such
as fingerprint, iris and DNA are accurate but cannot be
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used from a distance. As a solution, combining face recog-
nition and speaker identification with other vision-based
soft biometrics can help provide more robustness in human
identification at a distance and in unconstrained and dynamic
environments [12]. For instance, Lawson and Martinson
[7] uses a Markov Logic Network to fuse soft biometric
indicators (nose, forehead and clothing images taken relative
to the detected face position) with face recognition and
speaker identification, demonstrating 74% recall and 97%
precision, with people facing forward 1 m to 2 m away
from the robot. However, pose requirements make interaction
restricted to a limited and constrained space nearby the robot.

To increase the interaction space, this paper presents a
system that combines face recognition and speaker identifica-
tion with human metrology (HM) features (e.g., body shape,
anthropometric measurements and geometrical features gen-
erated from these measurements). According to Adjeroh and
al. [13], human metrology can be defined using 10 measures
of lengths (arm, head), breadths (head, shoulder), circumfer-
ences (armscye, chest, neck base, waist), stature and weight.
Circumference measures are difficult to extract from 2D
images and require precise 3D modelling [13]. However,
HM measures such as height [14] and silhouette [15] can be
perceived from 2D images. Lin and Wang [1] developed an
automated body feature extraction method from 2D images,
generating 38 front and 22 side features from a silhouette in
approximately 30 seconds. They used a clockwise sequential
extraction process initiated from a starting point (the top of
the head) to then follow the silhouette and extract the desired
features in a specific order.

HM has not yet been used in HRI for people identification,
and could be quite beneficial if processing time could be
decreased substantially. The main contribution of this pa-
per is to present improvements made to Lin and Wang’s
approach, such as using additional features, following an
anthropometry-based features search and exploiting a parallel
extraction process to derive measures independently from
one another, making it fast enough to be used for online
processing and minimizing latency. In addition, a dynamic
background substraction was used in order to enable HM ex-
traction in unconstrained environment. To illustrate potential
benefits of the approach, fusion of face recognition, speaker
identification and HM for trials conducted in controlled
conditions is presented, simply by weighting the respective
identification results according to the distance between the
person and the robot.



The paper is organized as follows. Section II presents our
system and the biometric modules. Section III describes the
experimental setup and the system’s configuration for the
trials. Section IV provides identification results in relation
to the distance between the robot and the person, for each
biometric module and for their combined results.

II. ONLINE HUMAN IDENTIFICATION SYSTEM

Figure 1 illustrates our system’s overall architecture. It
consists of four primary modules: one for each biometric
modality used (Face recognition, Speaker identification, and
HM), and a Fusion module. Biometric modules basically
examine features from different perceptual modalities to find
matches with training data stored in the databases. Each
module 7 gives an ordered list of identification candidates
k from a set of K models, along with their confidence level
s;(k). Fusion consists of combining the confidence levels
s;(k) from the biometric modules to provide the overall
confidence level s(k) for each possible identity K.

A. Face Recognition

Face recognition is done using the FaceRecognizer class
from OpenCV 2.4 and a Kinect infrared depth-sensing cam-
era (with a range of 0.8 m to 4 m). The Haar Cascade Face
Detector, also known as the Viola-Jones method [16], is used
for face detection. Once a face has been detected, a histogram
equalization is applied to standardize the brightness and
contrast of the image. Then, the Eigenfaces method (also
known as Principal Component Analysis (PCA)), is applied
on the pre-processed facial image [17]. The number of
extracted eigenfaces is based on the number of faces in the
database. A nearest neighbour method is used to identify
the most likely candidate(s): confidence levels so(k) are
evaluated according to (1) using the Euclidean distance &
between the perceived and the database features, where NV
is the number of trained faces.

1 4]

~ (D

SO(k)zl_ﬁ N

B. Speaker Identification

Speaker identification is performed using ManyEars [18]
and WISS [19]. Raw audio data from a microphone array
are sent to ManyEars, a source localization, tracking and
separation system designed for mobile robots [18]. The
separated and postfiltered audio streams are then fed to
WISS, a speaker identification system for mobile robots
operating in noisy and reverberant environments [19]. WISS
generates a set of speech features and also estimates the
additive and convolutive noises in the room. A Parallel Model
Combination (PMC) technique is proposed to update each
speaker model initially trained in a clean environment, such
that these models match the actual environment. Each model
is represented by a set of clusters, which are moved according
to additive and convolutive noises. The deviation between
features and the clusters of each model k is represented by
the variable h(k). The speech features are compared to the
updated models and a confidence level s;(k) is provided

for each model k, as expressed by (2). The indexes k; and
ko correspond to the models with the smallest (h(k;)) and
second smallest (h(ks)) deviations. The parameters «; and
(1 are set to 0.02 and 0.01, respectively. The weighted rate
of good speaker identifications is 96% for a signal-to-noise
ratio (SNR) of 16 dB and 84% at a SNR of 2 dB when pink
noise is observed [19].
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C. HM

Human metrology extraction starts by subtracting the
image background to obtain the foreground silhouette, as
illustrated by Fig. 2. Failure to subtract the background pre-
cisely impacts the precision of the foreground silhouette, and
therefore influences HM identification performance. Using
point cloud data from the Kinect would help extracting the
foreground and pose, but would limit the use of HM to
less than 4 m. Two methods for background segmentation
are used: one to generate the training data set used for
matching, and one used to acquire image in real-world
settings. As done by Lin and Wang [1], the training data
set is created from images (different from the ones used
for face recognition) of people wearing white underware in
front of a black background and under standard illumination
conditions, to get precise HM measures (which would not
be possible if casual clothing was allowed). Front and side
images are taken with people adopting a standard posture
with their limbs straight and arms apart from the torso, to
obtain a precise silhouette and estimate all body features
for the training process. A basic binary thresholding is used
to classify pixels that belong to the object from those of
the background. In real-world use, we chose to use ViBe,
an open source universal background subtraction algorithm
[20], for background segmentation (while Lin and Wang
approach always assumes that people are taking specific
poses in front of a black background). ViBe takes a pre-
processed image as input and outputs a binary image of the
estimated foreground. It works with possible occlusions with
obstacles and in front of different types of static or changing
backgrounds. It enables the system to detect motion when the
robot is immobile, and can easily reinitialize the background
model once the robot starts to move again. Taking a pose
as for the training data is not required because the system
attempts to identify people even if a subset of body features
are visible; it does however help identify the largest possible
set of features.

Then, also as in [1] and as shown in images 2e to 2h, a
Canny edge detector [21] is used to do foreground boundary
extraction for silhouette segmentation. Internal holes in the
foreground silhouette are filled so that edge pixels are linked
to a continuous and closed silhouette curve. Each pixel
position in the silhouette is transformed using Freeman’s 8-
connected chain codes to obtain the direction for the current
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Fig. 1: System architecture

(a) Front posture at
3 m for the training
data set

(b) Side posture at
3 m for the training
data set

(e) Segmented sil-
houette from front
posture for the train-
ing data set

(f) Segmented sil-
houette from side
posture for the train-
ing data set

(c) Front posture at 4
m in real-world set-
tings

(d) Side posture at 3
m in real-world set-
tings

(g) Segmented sil-
houette from front
posture in real-world posture in real-world

(h) Segmented sil-

houette from side

settings settings

Fig. 2: Background segmentation and silhouette extraction

pixel [22]. Finally, to reduce the computational load and
memory usage for feature extraction, a silhouette reduction
method minimizes the chain code length by detecting straight
lines and removing duplicated directions, keeping only the
points where the direction changes in relation to the starting
point. Once the silhouette is reduced, all silhouette features
are extracted using the 90° directional change rule from Lin
and Wang [1], reducing the number of silhouette contour
points by approximately 90%. But contrarily to Lin and
Wang approach, HM is done over 45 front features and 24
side features (compared to 38 front and 22 side features for
[1]) shown in Fig. 3a and Fig. 3b, respectively, with each
feature represented by a dot and new features by a X on
the silhouettes. Feature estimation from the segmented sil-
houettes follows an anthropometric-based method developed
to evaluate the optimal position of each measure to be used

for matching. The optimal location of each feature in the
image is compared with the average white U.S. american
anthropometric measures [23] using a nearest neighboor
method. If the distance between the anthropometry position
being evaluated and the estimated feature is higher than a
threshold of [ pixels, the feature is rejected and not used for
identification. The threshold [ is set based on the standard
deviation between each optimal feature location and each
detected features f from all training data. A parallel feature
extraction process is used to independently detect feature
without relying on the previous detected feature. So instead
of having to stop the feature extraction process as soon as
one one feature is undetectable or if the deviation error from
the anthropometric optimal position is too large (as in Lin
and Wang), the parallel feature extraction process makes the
approach robust to missing feature by detecting all possible
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Fig. 3: HM Measurements

features. It also decreases processing time from 30 seconds
to 400 ms for a given input image, processed in a specific
thread initiated when the image is acquired.

From these detected features, a total of 20 front measures
and 12 side measures are extracted in the process, shown
in Fig. 3a and Fig. 3b. Only measures with the available
features are evaluated. These measures are derived from the
x axis distance for horizontal measures, the y axis distance
for vertical measures, and the euclidean distance for straight
measures. A conversion table is created by taking images,
from 40 cm to 6 m with 20 cm increment, of a chessboard
and calculating the size of a line at each step, and then
applying a linear interpolation, as the real length of a line
is known. Laser range finder data are used to improve the
precision at close range (between 0.8 m and 3.5 m, with a
Hokuyo UTM-04LX laser range finder) using the distances
of both legs and of the torso projected axis at the centre of
both legs on the ground.

Matching is then conducted using the following global
measure deviation method. Each estimated measure m.(p)
is compared to the modelled measures my(p) (p =
0,1,..., P—1) from the training data to evaluate the summed
standard deviation g(k) over the K models in the training
set. Once all training models are evaluated, an ordered
list of potential candidates C' is selected from the list of
models with the lowest global feature deviations. The global
feature deviation of the (C'+1) best model (the first ordered
candidate outside the list) is used as a reference gr.r. A
sigmoid function expressed by (3) is then used to generate
sa(k), with ap = 10 and By = 5, to generate the confidence
score for each C candidate. Front and side measures are
matched independently and a confidence value is calculated
for each posture depending on the current pose of the person.

s2(k) = (14 exp [~ {(g0F) — grep)? — a2} /2]) " )
D. Fusion

The objective of this module is to combine the identifi-
cation results of the three biometric modalities, taking into
consideration that each one is independent, asynchronous and
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Fig. 4: IRL-1 experimental platform.

can provide valid identifications in complementary condi-
tions. For instance, for face recognition the person must be
close to the robot, while speaker identification or HM may
be reliable at larger distances. The Fusion module receives
an ordered list of the best potential identification candidates
from each biometric modalities, expressed by s;(k). Each
modality list of identified candidates with their confidence
levels s;(k) is normalized using the tanh normalization es-
timator (also known as the Hampel estimator [24]) according
to [25]. Hampel estimators reduce the influence of the points
at the tails of the distribution during the estimation. Equation
(4) evaluates s(k) as a weighted sum on the confidence levels
s;(k). Weights w;(d) are chosen according to the perceived
distance d between the person and the robot, and their sum
over 4 is one. The variable ¢;(k) represents the rank in the
ordered list of s;(k) (e.g., ¢;(k) = 0 if the model k has
the highest confidence level s;(k)). It is used to decrease the
influences of candidates with low confidence levels. The final
identification provided by the Fusion module corresponds to
k with the highest s(k) and with s(k) >= T, with T being
a threshold set to designate a valid identification.

2
s(k) = si(k)wi(d) (4)
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III. EXPERIMENTAL SETTINGS

Figure 4 illustrates the platform IRL-1 used for the trials.
IRL-1 use a Kinect camera to detect the presence of a person
using a RGB 640 x 480 image at 30 Hz for face recognition.
A microphone array with eight channels is used to generate
an audio stream for the active speaker. The multi-channel
signals are sampled with the 8SoundUSB sound card at
48000 samples per second [26]. A high definition camera
(Logitech ¢910) is used to record images for HM with a
1280 x 960 resolution at 10 Hz, which greatly reduces the
level of distortion. These images are encoded as a 8-bit per
channel BGR format. A pinhole model is also used to cancel
lens distortions. The digital camera is fixed to the robot
body, 1 m above the ground. The IMU (Inertial Measurement
Unit) on IRL-1 is used to stop image acquisition when slight
oscillations are observed. A Hokuyo UTM-30LX laser range



finder is used to measure the distance with the person.

Training data were acquired for 22 male participants. Data
acquisition for face recognition and speaker identification
were done with each participant sitting 1.5 m away from the
recording devices. For face recognition training data, images
were captured for 30 seconds, in order to obtain 150 images,
with the participant doing the following: 1) Look directly to
the camera for the first 5 seconds, adopting a neutral pose
with no facial expressions; 2) Look in each direction (left,
right, top, bottom) at a 45° angle for at most 2 to 3 sec each;
3) Look directly to the camera while talking and changing
facial expressions for the last 13 to 17 seconds. During this
training, one model is created for each participant, creating a
list 150 of eigenfaces for each images acquired. For speaker
identification training data, each participant had to read out
loud random passages from a book, for 2 min. For HM
training data, participants stood 3 m away from the camera,
taking front and side poses for 30 sec each. One model per
participant is generated for each pose.

Trials in real-world conditions were done with 7 of these
participants, selected randomly and wearing casual clothing.
For face recognition, /N was set to 3300.The reverberant time
decay of the room (RT60) was 300 msec. The average SNR
for each microphone was estimated at approximately 3 dB
due to the wideband noise of the fans on the robot. Each
trial started with the participant being out of IRL-1’s sight,
then moved to the 1 m mark on the floor in front of the
robot, keeping each pose (front or side) twice for 30 seconds,
while talking and facing the Kinect when adopting the front
pose. This allowed us to characterize the performance of the
system in the best possible and in controlled conditions. IRL-
1 remained immobile to facilitate background segmentation.
T was set empirically to 87.5%.

IV. RESULTS

Performance can be expressed in terms of recall, precision
and accuracy, as defined in (5), with ¢, the number of
valid acceptation (true positives), t,, the number of failure
to reject invalid result (true negative), f, the number of
failure to accept valid result (false positives), and f,, the
number of failure to reject false result (false negatives).
Weight optimization was done by evaluating performance for
all weight combination (0.01 increment), and by selecting
the ones minimizing the false acceptance rate (FAR) and the
false reject rate (FRR) while taking in account the failure to
capture rate (FTC) (or recall). Table I presents the weights
derived. Performance are evaluated using the recognition
data of the 7 participants for all distances, both poses and
both sequences. The system provides a list of all trained
candidates, ordered according to their confidence level based
on FAR. Results are presented in relation to distances for
each biometric modality and for their combined results.

tp
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TABLE I: w;(d) for each modality

Distance Weights
(m) Face  Speaker HM
1 0.9 0.1 0
2 0.684 0.316 0
3 0 0.582 0.418
4 0 0.421 0.579
5 0 0.667 0.333
6 0 0.785 0.215

Table II gives Recall, Precision and Accuracy performance
for face recognition, speaker identification and HM. For face
recognition, recall goes from 79% at 1 m to 22% at 2 m.
Good accuracy is observed at 1 m but quickly drops at 2
m, meaning that more candidates are required to compensate
for the difficulty of recognizing faces (which become smaller
as people are farther away from IRL-1). Farther to 2 m, no
faces (e.g., Recall = 0) can be detected in any images. As for
precision, if a face in detected then it can be identify without
the need of segmenting or extracting information in order to
identify the individual, thus the 100% precision. For speaker
identification, ManyEars detects a sound source and tracks
it until the source becomes silent for many seconds. All the
frames in the audio stream generated are used for speaker
identification, and WISS deals internally with time-frequency
masks for speech activity. This led to a recall and precision
rate of 100% for all trials. Performance for this modality are
affected by audible noises made by the onboard fans located
on IRL-1’s torso and the level of reverberation in the room.
As the distance between IRL-1 and the participant increased,
accuracy decreased because the amplitude of the audible
speech decreased. Regarding HM, recall can be greater than
40% at distances of 2 to 6 m, from which images of the entire
body can be processed, depending on the individual height.
The best precision and accuracy with the highest recall are
observed at 3 m where each feature are further apart and
the effect of features deviation from the optimal position
have less impact than at higher distance. At 1 m and 2 m,
some features are not visible and some overlap with other
features, decreasing precision. For larger distances, accuracy
decreased because the perceived silhouettes were smaller,
making it harder to identify a person from its silhouette.
Moreover, casual clothing in real life makes identification
less accurate.

TABLE III: Fusion Identification Performance

Distance Recall/Precision Accuracy (k) (%)
(m) (% | %) 1 2 3 4 5
1 91 /100 93 96 100 100 100
2 58 / 100 51 72 90 93 94
3 78 199 43 79 719 86 86
4 71799 29 50 64 64 71
5 74197 14 43 50 57 64
6 79 /91 0 21 21 36 64




TABLE II: Modality Recognition Performance

Face Speaker HM

Dist. Recall / Prec. Accuracy (k) (%) Recall / Prec. Accuracy (k) (%) Recall / Prec. Accuracy (k) (%)

(m) (% | %) 1 2 3 4 5 [ (% | %) 1 2 3 4 5 [ (% 1 %) 1 2 3 4 5
1 79 / 100 9% 96 96 97 97 100 / 100 43 64 71 71 71 0/0 0 0 0 0 0
2 100 / 22 37 42 54 81 89 100 / 100 29 43 43 50 50 24 147 16 31 31 31 31
3 0/0 0 0 0 0 0 100 / 100 14 50 50 57 57 47199 37 44 49 51 53
4 0/0 0 0 0 0 0 100 / 100 14 36 36 36 43 42/98 26 34 36 47 54
5 0/0 0 0 0 0 0 100 / 100 7 36 36 43 50 44 /96 16 19 27 33
6 0/0 0 0 0 0 0 100 / 100 0 14 14 29 50 47/ 83 5 7 8 117

Table III presents the overall fusion identification per-
formance. An accuracy of 93% is achieved for a single
person at 1 m. Accuracy goes down to 0% at 6 m because
the identification confidence is not high enough to pass the
threshold for any person. Accuracy reaches 100% at 1 m
with £ = 3, and a rate of 64% is achieved at a distance of
6 m with k = 5. WISS produces an identification list every
second, while the face and HM produce an identification list
for every frame in which the modality is detected. Thus, the
overall system identifies individual every 200 ms with all
combined data acquired.

V. CONCLUSION AND FUTURE WORK

This paper presents a multimodal biometric identification
system that uses human metrology measures to comple-
ment face recognition and speaker identification modalities.
Results suggest that the combination of these biometrics
modalities can improve precision over a larger range of
distances between the person and the robot, compared to
each modality taken individually. Our intent with this work
was to demonstrate the potential benefits of using HM as a
modality for online biometric identification. In future work,
we intend to study how to optimize the weighted influences
of each biometric modality by using for instance Markov
Logic Network [7], extend the work to create a 3D human
body model in virtual space, and to validate the use of the
approach in natural settings, indoor and outdoor, with the
participants and the robot moving.
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