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Abstract— This paper presents WISS, a speaker identification
system for mobile robots integrated to ManyEars, a sound
source localization, tracking and separation system. Speaker
identification consists in recognizing an individual among a
group of known speakers. For mobile robots, performing
speaker identification in presence of noise that changes over
time is one important challenge. To deal with this issue, WISS
uses Parallel Model Combination (PMC) and masks to update
in real-time the speaker models (obtained in clean conditions)
to both additive and convolutive noises. The results show that
the weighted rate of good speaker identifications is 96% on
average for a Signal-to-Noise Ratio (SNR) of 16 dB, whereas it
only decreases to 84% when the SNR drops to 2 dB.

I. INTRODUCTION

Autonomous interactive robots must be able to perceive
and analyze sounds from real life settings. The focus so far
has mostly been on speech recognition (what is being said
[1], [2], [3], [4]) or sound localization (where is it coming
from [5], [6]), but not so much on speaker identification
(who is speaking), especially in noisy conditions. A 8-
microphone array system for mobile robots that uses soft
channel selection can identify a speaker among a group of
30 known speakers at a recognition rate of 90% when the
robot is 2 meters away from the speaker, and 75% when
it is 3 meters away [7]. Experiments are conducted in a
quiet environment but the Signal-to-Noise Ratio (SNR) is
not given. Another system identifies individuals with both
their voice and facial features [8]. This fusion technique
gives recognition rates which range from 88.25% when the
speaker is three meters away from the robot, to 99.5% when
the speaker is one meter away in clean, noiseless conditions.
The SNR is not given in this experiment.

This paper presents a speaker identification system de-
signed to work on mobile robots operating in noisy environ-
ments. The system is named WISS (for Who IS Speaking).
WISS extends Many Ears, an artificial auditory system for
mobile robots which uses an array of eight microphones
[1], [5], [2]. ManyEars provides enhanced speaker signal
for improved recognition in real world settings. Its low
complexity and its capacity to localize, track and separate
many simultaneous sound sources make it ideal for real
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CANADA, Francois.Grondin2@usherbrooke.ca
Francois.Michaud@usherbrooke.ca

life scenarios. ManyEars has been used on different plat-
forms including Spartacus [9], SIG2 [3] and ASIMO [4],
and is usually exploited as a pre-processing module for
a speech recognition engine. WISS exploits the separated
sound sources processed by ManyEars and already repre-
sented in the frequency domain, reducing the computational
load. To deal with noisy conditions, WISS estimates the
additive and convolutive noises from the speech signals
obtained from ManyEars, and updates the speaker models
(derived from training signals generated in clean conditions)
to match the noisy environment.

The objective of the paper is to characterize WISS’ speaker
identification performance according to the SNR, to show
that a robust speaker identification is possible in a noisy
environment. The paper is organized as follows. Section II
explains WISS, followed by Section III with results obtained
and Section IV concludes the paper with upcoming work.

II. WISS, A SPEAKER IDENTIFICATION SYSTEM
INTEGRATED TO MANYEARS

In clean (noiseless) conditions, speaker identification is
usually done with the acoustics features of each phoneme,
represented by the Mel-Frequency Cepstral Coefficients
(MFCC). A Vector Quantization (VQ) model [10] or a Gaus-
sian Mixture Model (GMM) [11] is generated for each set of
features. The unique speaker’s semantics (i.e., how phonemes
are organized and not how they are pronounced) is more
robust to noise but heavily relies on pre-trained language
models [12]. With distant microphones, convolutive (room
reverberation, channel distortion) and additive (incoherent
background sound sources) noises need to be considered.
Convolutive noise is usually removed with techniques de-
rived from the Cepstral Mean Normalization (CMN) method
[13]. On the other hand, additive noise can be lessened with
spectrum subtraction [14]. Additive noise is usually pink as
it is generated by fans or electronics. When both convolutive
and additive noises are observed, it is possible to perform the
CMN and spectrum subtraction techniques in cascade [15].
It is also common to update the speech model during the
identification stage using Parallel Model Combination (PMC)
so that the model matches the noisy environment conditions
[16]. For speech recognition, a dynamic update of the Hidden
Markov Models (HMM) is also proposed in order to match
the environment conditions [17].

Training speaker models in noisy conditions is difficult as
regions of low-energy are corrupted by additive noise, which
distorts significantly the voice features. Training the models
and identifying the speaker in the same noisy environment is
desirable, but is not realistic as the noise is not stationnary



over long periods of time (e.g., a mobile robot interacts in a
dynamic environment with moving speakers). However, it is
possible to corrupt the models obtained (through the training
phase) from clean features with the noise perceived in the
operating environment to match the actual conditions.

Figure 1 illustrates the modules of our speaker identifi-
cation system, which are described further in the following
subsections. Training of speaker models is performed with
a single close microphone in a quiet environment, with the
same sampling rate and window size as of ManyEars, also
used here as a pre-processing module to separate sound
sources perceived in the environment. Features are then
extracted for each speaker, and models are generated. The
training signal is usually corrupted by convolutive noise
whereas the identification signal is corrupted by both con-
volutive and additive noises. With ManyEars, localization is
performed with a beamformer and each source is tracked
with a particle filter. The source position is used to perform a
Geometric Source Separation (GSS) and the separated signal
is then enhanced with a post-filter. The separation stage in
ManyEars improves the SNR of the source signal which
is used to generate the features in the identification stage.
The post-filtered signal is also used to generate a mask to
identify noiseless dimensions in each feature. This signal
is not used to generate the features since its time-varying
gain makes it unsuitable for estimating the additive and
convolutive noises. Features and masks are stored in a finite
length buffer because a minimum number of elements is
required to estimate noises. The models obtained during the
training stage are then updated to match the noisy conditions
in the identification stage and a score is computed. The
identified speaker (id) and the level of confidence (con f )
regarding this choice are thus obtained.

Fig. 1. Blocks diagram of WISS and ManyEars

A. ManyEars, A Sound Source Localization, Tracking and
Separation System

In this section, we present a general overview of our
implementation and configuration of ManyEars [1], [5], [2]
for its uses with WISS. More specifically, ManyEars uses
a cubic array of M = 8 microphones. The signal of each
microphone is sampled at Fs = 48000 samples/sec and is
windowed to generate frames of N = 1024 samples with a
hop size of 512 samples.

Using the signals of each microphone, a Fast Fourier
Transform (FFT) is performed on each frame and the power
spectrum is computed. The expression X l

m[k] stands for
the power spectrum of each frequency bin k, frame l and
microphone m. A vector Xl [k] of M dimensions is defined
in (1). The operator (·)T stands for the transpose matrix.

Xl [k] =
[

X l
0[k] . . . X l

M−1[k]
]T (1)

Localization is performed by a beamformer that scans the
energy over a 2562-point spherical grid with a one meter
radius. Equation (2) shows that the direction θ of a potential
source matches the grid point with the maximum energy.

θ = argmax
d

M−2

∑
m1=0

M−1

∑
m2=m1+1

Rl
m1,m2

(delaym1,m2(d)) (2)

The expression delaym1,m2(d) stands for the time delay
of arrival (TDOA) between microphones m1 and m2 for a
sound source located at the point d on the grid. All delays are
computed once and stored in memory. The cross-correlation
Rl

m1,m2
(τ) between the microphones signals m1 and m2 at

frame l is given by the expression in (3), where the weighting
factor ζ l

m[k] reduces the contribution of noisy frequency bins
affected by stationnary noise and reverberation. The operator
(·)∗ stands for the complex conjugate.

Rl
m1,m2

(τ) =
N−1

∑
k=0

ζ l
m1
[k]X l

m1
[k]ζ l

m2
[k]X l

m2
[k]∗

|(Xmic)l
m1
[k]||(Xmic)l

m2
[k]|

e
(

j2πkτ

N

)
(3)

Once a potential source is found, the cross-correlation
terms are set to zero over a delay range τr, as shown in
(4). This removes the contribution of this source to the total
energy of each point on the grid such that the next potential
source can be found using (2). The localization step returns
four potential sources as this process is set to repeat four
times, for simultaneous tracking of sound sources.

Rl
m1,m2

(τ) = 0,
∀ m1,m2,τ : m1 6= m2, |τ−delaym1,m2(θ)| ≤ τr

(4)

Each potential source either corresponds to a new source,
a false detection or a source already tracked. Moreover,
a sound source contains energy gaps in time because the
speaker is not active during silence periods. For this reason,
a particle filter made of 500 particles is assigned to each
tracked source in order to model the source behavior as a
slowly moving object that releases energy unevenly in time.



Separation of sound sources is done using information
provided by the Localization & Tracking module. Sound
source separation is based on the GSS technique, which
minimizes cross-talk when multiple sources are active and
maximizes directivity. A separation vector (Xsep

test)
l
[k] with

Z dimensions (where Z is the number of sources currently
tracked) is defined, as shown in (5).

(Xsep
test)

l
[k] =

[
(X sep

test )
l
0[k] . . . (X sep

test )
l
Z−1[k]

]T (5)

Equation (6) shows that the separated sources are obtained
from the multiplication of the microphone matrix and the
separation matrix, denoted by Wl [k].

(Xsep
test)

l
[k] = Wl [k]Xl [k] (6)

The separation matrix is updated recursively by discrete
steps of µ according to two constraints, ∂J1(Wl [k])

∂ (Wl)∗[k] and
∂J2(Wl [k])
∂ (Wl)∗[k] , a regularisation term λ and an energy normal-

ization term α l [k], as shown in (7). The first constraint min-
imizes the cross-correlation between the separated sources
and the second one forces a unity gain for each separated
source and no gain for interfering sources. These expressions
are derived in [1].

W(l+1)[k] = (1−λ µ)Wl [k]−
µ

[
α l [k] ∂J1(Wl [k])

∂ (Wl)∗[k] +
∂J2(Wl [k])
∂ (Wl)∗[k]

] (7)

When a new source z is tracked, a row is added to the
separation matrix and its terms match the delay-and-sum
beamformer. The separation is then improved with time as
the separation matrix is updated recursively.

Finally, post-filtering is performed to enhance the sepa-
rated signals. The post-filter module makes use of an atten-
uation factor Gl

z[k] shown in (8), which takes into account
stationnary noise and reverberation, as explained in [2].

(X post
test )

l
z[k] = Gl

z[k](X
sep
test )

l
z[k] (8)

B. WISS, A Speaker Identification System

WISS is divided in two stages: training and identification.
The speaker models are generated in the training stage and
they are compared to speech segments in the identification
stage.

1) Training: Training is performed in a quiet environment
with a close microphone. Features are extracted and then a
model is generated.

a) Features: A pre-emphasis step is performed to in-
crease the weight of high frequencies, which are less cor-
rupted by pink noise. The emphasis factor Hemph[k] is given
by (9), where αemph is the emphasis parameter.

Hemph[k] = 1+(αemph)
2−2αemph cos(2πk/N) (9)

The weighted spectrum ({Xall
train}emph)

l
u[k] is given in (10),

where (Xall
train)

l
u[k] stands for the power spectrum of the

microphone signal at frame l for the speaker u.

({Xall
train}emph)

l
u[k] = Hemph[k](Xall

train)
l
u[k] (10)

This spectrum is then multiplied by a filterbank of F = 24
filters, as shown in (11). The expression b f [k] stands for the
gain of each filter f at each bin k. The range of frequencies
goes from 0 Hz to 15500 Hz according to the Bark scale
[18].

({Xall
train}mel)

l
u[ f ] =

N−1

∑
k=0

b f [k]({Xall
train}emph)

l
u[k] (11)

The logarithmic amplitude (call
train)

l
u[ f ] is computed to

model the behavior of the human ear as shown in (12).
The constant εlog is added to avoid a math error if
({Xall

train}mel)
l
u[ f ] is zero.

(call
train)

l
u[ f ] = ln

[
({Xall

train}mel)
l
u[ f ]+ εlog

]
(12)

Generated features include silence and speech frames. A
voice activity detector similar to the one used in [1] is used
and Lspeech

train active frames are kept (named (cspeech
train )l

u[ f ]). Fea-
tures are not converted to the cepstral domain as it is usually
the case with MFCCs because masks can only be used in
the spectral domain. Equation (13) shows how the CMN
technique is used in the spectral domain to compensate for
channel distortion to obtain the training features (ccmn

train)
l
u[ f ].

(ccmn
train)

l
u[ f ] = (cspeech

train )l
u[ f ]−

1

Lspeech
train

Lspeech
train −1

∑
l=0

(cspeech
train )l

u[ f ]

(13)
b) Models generation: A codebook of V centroids is

generated with the VQ technique to model the distribution
of the features obtained in (13). The fast k-means algorithm
is used to generate these centroids denoted by the expression
κv

u [ f ], where v stands for the centroid index [10].
2) Identification: Features, masks and noises estimation

are first computed. The models are then updated to match
these conditions and scoring is finally performed.

a) Features, Masks & Noises estimation: In a noisy
environment, the speech signal is corrupted by both additive
(Br[ f ]) and convolutive (Hr[ f ]) noises. It is assumed that the
speech signal and noises are statistically independent and
homogeneous for each filter f . The variable r stands for the
test segment index.

The separated and post-filtered spectra, (X sep
test )

l
r[k] and

(X post
test )

l
r[k], are weighted with the same pre-emphasis fac-

tor proposed in (9) in order to obtain the new spec-
tra ({X sep

test }emph)
l
r[k] and ({X post

test }emph)
l
r[k]. These spectra

are then multiplied by the filterbank used for training in
(11), which leads to the expressions ({X sep

test }mel)
l
r[ f ] and

({X post
test }mel)

l
r[ f ].

To identify the noiseless dimensions of each feature, a hard
instantaneous mask (minst)

l
r[ f ] is generated in (15) from the

ratio (ratioinst)
l
r[ f ] of the post-filtered and separated spectra

obtained in (14).



(ratioinst)
l
r[ f ] =

({X post
test }mel)

l
r[ f ]

({X sep
test }mel)l

r[ f ]
(14)

(minst)
l
r[ f ] =

{
0 (ratioinst)

l
r[ f ]< Tinst

1 (ratioinst)
l
r[ f ]≥ Tinst

(15)

In some cases, most dimensions of a feature are corrupted
by noise (e.g., in silence periods), such that the full vector
should not be used at all in the recognition process. A vertical
mask (mvert)

l
r is therefore needed to filter out these noisy

features. Equation (16) shows how this hard mask is derived
from the instantaneous mask.

(mvert)
l
r =

0
(

∑
F−1
f=0 (minst)

l
r[ f ]
)
< Tvert

1
(

∑
F−1
f=0 (minst)

l
r[ f ]
)
≥ Tvert

(16)

The logarithmic amplitude is computed to obtain (call
test)

l
r[ f ]

from ({X sep
test }mel)

l
r[ f ] the same way this is done in (12).

Active frames (when (mvert)
l
r is non-zero) are renamed

(cspeech
test )l

r[ f ], for a total of Lspeech
test frames. For these frames,

the convolutive noise usually dominates the additive noise.
The corrupted speech with convolutive noise can therefore
be estimated by averaging these frames, as shown in (17).

(X̂conv)r[ f ] =
1

Lspeech
test

Lspeech
test −1

∑
l=0

(cspeech
test )l

r[ f ] (17)

On the other hand, additive noise is mainly observed in
silence periods, more specifically in frequency bands where
speech is missing. This noise B̂r[ f ] can thus be estimated
with a weighted average that relies on the instantaneous
masks, as shown in (18).

B̂r[ f ] =
∑
(Ltest−1)
l=0 (call

test)
l
r[ f ](1− (minst)

l
r[ f ])

∑
(Ltest−1)
l=0 (1− (minst)l

r[ f ])
(18)

Moreover, simulations showed that the expression in (19)
is a fair estimate of the convolutive noise Ĥr[ f ], provided
that the latter dominates the additive noise.

Ĥr[ f ] = ln
{

exp
(
(X̂conv)r[ f ]

)
− exp

(
B̂r[ f ]

)}
(19)

Convolutive noise might not outstand additive noise for
all frequency bands, especially when pink noise is observed.
A horizontal mask (mhori)r[ f ] is thus generated in (20) to
address this problem.

(mhori)r[ f ] =

{
0 {(X̂conv)r[ f ]− B̂r[ f ]}< 0
1 {(X̂conv)r[ f ]− B̂r[ f ]} ≥ 0

(20)

The mean energy for each feature is removed in (21) in
order to keep only the spectral shape, denoted by (cac

test)
l
r[ f ].

The horizontal mask is used here to disregard noisy bands,
which do not convey much speech information.

(cac
test)

l
r[ f ] = (call

test)
l
r[ f ]−

F−1

∑
f=0

(call
test)

l
r[ f ](mhori)

l
r[ f ] (21)

Finally, global masks (mall)
l
r[ f ] are obtained from the

product of the instantaneous, vertical and horizontal masks,
as shown in (22).

(mall)
l
r[ f ] = (mvert)

l
r(mhori)r[ f ](minst)

l
r[ f ] (22)

b) Updated models: Models are then dynamically up-
dated to match the environment conditions. Equation (23)
shows that the noisy centroids (κnoisy)

v
u[ f ] are obtained by

adding additive and convolutive noises previously obtained
in the linear-spectral and log-spectral domains respectively.

(κnoisy)
v
u[ f ] = ln

{
exp
(
κ

v
u [ f ]+ Ĥr[ f ]

)
+ exp

(
B̂r[ f ]

)}
(23)

The normalized centroids (κac)
v
u[ f ] are obtained in (24)

by removing the weighted mean energy.

(κac)
v
u[ f ] = (κnoisy)

v
u[ f ]−

F−1

∑
f=0

(κnoisy)
v
u[ f ](mhori)r[ f ] (24)

c) Scoring: The general expression for the Euclidean
distance weighted with masks is defined in (25).

dist(κ,c,m) =

√√√√F−1

∑
f=0

[m[ f ](κ[ f ]− c[ f ])2] (25)

The score for each model u is obtained from the summa-
tion of the minimum Euclidean distance between all noisy
centroids (κac)

v
u and each test feature (cac

test)
l
r, with the mask

(mall)
l
r used for weighting, as shown in (26).

scorer
u =

Ltest−1

∑
l=0

min
v=0,...,(V−1)

dist((κac)
v
u,(c

ac
test)

l
r,(mall)

l
r) (26)

Equation (27) shows that the identified speaker corre-
sponds to the model with the smallest difference between
the model and the features.

(idexp)r = argmin
u
{scorer

u} (27)

Finally, a confidence value con fr is evaluated using (28)
for the identified speaker. This value makes use of a sigmoid
function and depends on the difference ∆score between both
smallest scores. The expressions αs and βs set respectively
the decision level and the rate at which the confidence
increases as this level is exceeded.

con fr = (1+ exp [−(∆score−αs)/βs])
−1 (28)

III. RESULTS

Experiments are conducted to evaluate the recognition
rates as a function of the SNR. For the trials, ManyEars
is coded in C language while WISS is implemented using
Matlab. They both run on a Intel Core i7 processor clocked
at 2.93 GHz. In this setup, WISS uses only 10% of the CPU
cycles.



Experiments are carried out in a room of 10 m × 10
m × 2.5 m with normal reverberation and some audible
background noise generated by fans and other electronics.
This noise is pink as most of its energy lies in the low
frequencies. The eight microphones cubic array (0.32 m ×
0.32 m × 0.32 m) is positioned in the middle of the room
at 0.6 m above the floor. A loud speaker is used as a sound
source located at ten different positions around the array and
0.6 m above the floor, as shown in Figure 2. The parameters
of ManyEars and WISS set experimentally to optimize the
performances are shown in Table I.

TABLE I
EXPERIMENTAL PARAMETERS

ManyEars WISS
λ µ αemph εlog V Tinst Tvert αs βs

0.5 0.002 0.95 10−10 256 0.05 6 0.02 0.01

The speech segments of 11 female and 9 male speak-
ers from the TSP Speech Database [19] are used for this
experiment. Sequences of 60 seconds recorded in a quiet
environment are used for training the model of each speaker.
Six utterances of 10 seconds are then played sequentially for
each speaker at five different gains (labeled from 1 to 5) to
characterize the performances according to different SNRs.
More than 16 hours of tests are thus recorded (10 positions
× 20 speakers × 6 utterances × 5 gains × 10 secs) and
analyzed later on.

Fig. 2. Experimental setup

Table II presents the averaged SNR of the speech energy
over the average of the noise energy during silence periods.
As expected, similar SNR are observed for positions 1 to 8
for the same sound levels, when the distance is constant and
the angle changes, and the SNR decreases as the speaker
moves to positions 9 and 10 (as the distance increases).

The weighting rate of good identifications is defined as
the ratio of the sum of the confidence values that correspond
to a good speaker identifications over the sum of all con-
fidence values, as shown in (29). The expression (idtheo)r
stands for the real speaker identity. On the other hand, the
unweighted rate of good identifications is the sum of correct
identifications over the sum of all identifications.

TABLE II
SIGNAL-TO-NOISE RATIOS (IN DB) AS A FUNCTION OF SOURCE

POSITIONS AND SOUND LEVELS

Position Level 1 Level 2 Level 3 Level 4 Level 5
1 16.92 12.20 7.94 4.41 2.07
2 17.33 12.57 8.23 4.61 2.25
3 16.56 11.86 7.72 4.27 1.82
4 15.56 10.91 6.68 3.58 1.50
5 15.31 10.77 6.60 3.52 1.61
6 15.75 11.21 6.99 3.66 1.63
7 17.29 12.54 8.24 4.60 2.24
8 16.59 11.84 7.75 4.18 1.69
9 12.48 8.13 4.50 2.18 0.83
10 10.22 6.14 3.11 1.30 0.42

rategood
weight =

∑∀r:(idexp)r=(idtheo)r con fr

∑∀r con fr
(29)

Figure 3 shows the weighted rates of good identifications
without masks (e.g. (mall)

l
r[ f ] = 1 ∀ r, l, f ) and without PMC.

In the latter case, the features (cac
test)

l
r[ f ] are normalized with

CMN as shown in (13), the mean energy of each of the
features (cspeech

train )l
u[ f ] is removed as in (24) prior to training

the models, and models are not updated, which leads to
(κac)

v
u[ f ] = (κnoisy)

v
u[ f ] ∀ u,v, f . The unweighted rates are

also presented for level 5 and show that this method improves
the identification rates in addition to sharpen the weighted
rates. Performances without masks but with PMC are shown
in Figure 4 and rates with masks and PMC are shown in
Figure 5. When masks and PMC are used, best performances
are achieved at a distance of 1.5 m at level 1. Performances
are similar for positions 1 to 8, no matter what is the source
angle (the small difference is due to different microphone
gains). In this configuration, the SNR is 16dB on average and
the weighted rate of good identifications is 96% on average.
At level 5, for the same positions, the error rate drops to
84%, as the SNR drops to 2dB on average. On the other
hand, worst performances are observed at a distance of 3.5 m,
which corresponds to position 10. For this scenario, the SNR
drops to 0.42 dB and thus the rate decreases to 70%. In a few
cases, the performances at position 10 outperform those at
position 9 since the low SNR introduces some randomness in
the results. Figure 3, Figure 4 and Figure 5 suggest that using
masks and PMC increase the rate of good identifications up
by 52% in some cases. However, when the SNR is high (e.g.,
at level 1), PMC improves the performances by 10% whereas
masks do not increase the recognition rates, as expected.

IV. CONCLUSION

This paper presents WISS, a new speaker identification
system designed to be coupled to ManyEars. The proposed
system is well prepared for speaker identification on mobile
robots because training is performed once and models are
updated online to the noise level perceived in the operating
environment. Moreover, the use of masks and PMC in WISS
improves the performances when dealing with pink noise.

Based on the good performances observed in our trials, the
next step consists in designing a C-library to run WISS in



Fig. 3. Rate of good identifications (No mask, No PMC)

Fig. 4. Rate of good identifications (No mask, With PMC)

real-time on a mobile robot. Experiments will be conducted
to measure performances with multiple simultaneous sound
sources. Up to now, testing has been verified with utterances
of 10 seconds. Dealing with shorter utterances (2 or 3
seconds) will be investigated as they will occur in real life
dialog. Once these validations are completed, we intend to
combine WISS with more sophisticated processes, such as
speaker verification (with the speaker indicating its identity
before performing the verification), speaker tracking (using
localization and tracking data from ManyEars) and multi-
modal people identification (using visual and audio features).
The confidence value introduced will be used for fusion with
face recognition engines and other bio-identification systems.
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