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Abstract— Rotary-Wing Air Vehicles (RW-UAVs), also re-
ferred to as drones, have gained in popularity over the last
few years. Intrusions over secured areas have become common
and authorities are actively looking for solutions to detect
and localize undesired drones. The sound generated by the
propellers of the RW-UAVs is powerful enough to be perceived
by a human observer nearby. In this paper, we examine
the use of particle filtering to detect and localize in 3D the
position of a RW-UAV based on sound source localization
(SSL) over distributed microphone arrays (MAs). Results show
that the proposed method is able to detect and track a drone
with precision, as long as the noise emitted by the RW-UAVs
dominates the background noise.

I. INTRODUCTION

The field of civil drones, especially the Rotatory-Wing Air
Vehicles (RW-UAVs), has expended rapidly lately, notably
because they are easy to control and are low-cost. Unlike
Fixed Wing Air Vehicles, RW-UAVs can perform stationary
flight and precise maneuvers, which are useful in many
applications such as videography and cartography [1], [2].
RW-UAVs can also be used to carry parcels at high speed,
either with the control of a pilot, or autonomously following
a trajectory using GPS and other sensors [3], [4]. However,
they can also be used for privacy violation, spying, vandalism
and especially for smuggling objects in jails. Authorities are
thus looking for methods to detect and localize undesirable
drones that fly over secured areas.

The sound produced by the propellers of RW-UAVs can be
used to detect such drones. To our knowledge and probably
because of the novelty of domestic RW-UAVs, very few
research papers have yet addressed RW-UAV detection, with
very limited results regarding performance and evaluation.
A drone detection approach based on its acoustic signature
has been proposed by Mezei et al. [5], with proof-of-
concept results in laboratory conditions. DroneShield inc.
and Drone-Detector inc. use a single-microphone to try to
detect the acoustic signature of a drone’s brushless motors
and propellers. However, multiple microphones are required
to determine the position of a drone. Acoustic cameras based
on large microphone arrays (MAs) (over 100 microphones)
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are used to project sound power levels generated by RW-
UAVs on a 2D image [6], [7]. Square Head/Norsonic inc.
uses an acoustic camera made of 128 microphones or more,
and Panasonic combines a 32-microphone array with a pan-
tilt-camera. Such devices provide sound source localization
(SSL) as the instantaneous direction of arrival (DOA) of
sound, i.e., the 2D position (elevation, azimuth) of the sound
sources. This is however insufficient to determine the 3D
position of the sound source. In fact, at least two MAs
spaced by a known distance are required to triangulate the
3D position of the sound source, as illustrated in Fig. 1. This
paper demonstrates how multiple MAs can be used to derive
the 3D position of a RW-UAV from the distributed MAs SSL
data.

Fig. 1. SSL from distributed MAs

Drone detection field trials are challenging: they require
large areas, good weather conditions, and a wide range of
diverse noise conditions (wind, sound from the surround-
ing environments). This challenge involves conducting in-
depth experiments with different SSL approaches (such as
Generalized Cross-Correlation with Phase Transform method
(GCC-PHAT) [8], [9], [10], [11], [12] or other variants [13],
Multiple Signal Classification based on Standard Eigenvalue
Decomposition (SEVD-MUSIC) [14], [15], [16], Multiple
Signal Classification based on Generalized Eigenvalue De-
composition (GEVD-MUSIC) [17], Multiple Signal Classifi-
cation based on Generalized Singular Value Decomposition
(GSVD-MUSIC) [18]), MAs’s positioning, data fusion ap-
proaches and other experimental condition. Before investi-
gating all these conditions, in this paper we demonstrate the
feasibility of doing 3D RW-UAV SSL using particle filtering
to combine data from distributed MAs.

We chose to use the ManyEars framework [8] to imple-
ment SSL (elevation, azimuth) on distributed MAs, to which
particle filtering (PF) is used to derive 3D SSL of a RW-
UAV. ManyEars also uses particle filtering for sound source
tracking (SST) of multiple sound sources using data from



a single MA, to estimate simultaneous the 2D positions
(elevation, azimuth) of these sound sources. In this paper,
PF is used to estimate the 3D position of one sound source,
i.e., a RW-UAV, based on the DOAs provided by the MAs,
distributed over an area at known positions. PF uses the
redondancy in the information from the direction given by
each MAs to narrow the distribution of particles around the
true position of the drone.

This paper is organized as follows. Section II presents
the overall system, along with how PF is used. Section III
describes the experimental setup, followed by Section IV
with the results obtained localizing a Parrot Bebop 2 drone
in outdoor conditions.

II. PARTICLE FILTERING FOR 3D SSL OVER
DISTRIBUTED MAS

Figure 2 illustrates the block diagram of our system using
PF for 3D SSL using K MAs, each performing SSL to
derive the DOA, represented as a unit vector q pointing in
the direction of the loudest sound source and its energy
e. As illustrated by Fig. 1, a virtual hemisphere around
each MA is scanned and the sum of microphone pair cross-
correlation is computed for each point on the surface. The
point with the greatest magnitude corresponds to the DOA
of sound, and the associated magnitude provides insights
regarding the confidence in the beamformer output. All
DOAs are transmitted to a central processing node, where
time synchronization is performed to cope with transmission
delay. Using the Network Time Protocol, synchronization can
be achieved within a few milliseconds of accuracy [19]. For
the current application, since the sound source maximum
speed is in the order of a few tens of meters per second, this
synchronization accuracy is sufficient. For each time frame
f , the observation vectors qfk and its energy value efk are
sent to the PF module that returns the estimated 3D position
x̂f of the sound source.

The main goal of PF for 3D SSL is to estimate the prob-
ability density function (PDF) of the position of the sound
source using a finite set of particles. We chose to use PF
rather than Kalman filtering because the states are modeled
according to a non-gaussian PDF. Each particle has different
parameters that are used to predict its new state. Each set
of new observations allows them to be weighted according
to how well they can represent the sound source. Following
this logic, PF consists of the following elements: prediction
model, instantaneous probability, observation assignation,
particle filter instantiation, particle filter destruction, particle
weight updates, and resampling.

A. Prediction Model

An excitation-damping model (similar to the one proposed
in [9]) is used to predict the position of each particle h, as
given by:

ẋfh = afhẋ
f−1
h + bfhFx (1)

xfh = xf−1
h + ∆T ẋfh (2)

Sound
Source

Localization

Parficle Filtering for
3D SSL

SSL

SSL

Time
sync.

Microphone
arrays (MAs)

Observation
assignation

Particle
filter

RW-UAV

Microphone Array Positions

Fig. 2. Block diagram of PF for 3D SSL over distributed MAs

afh = e−α
f
h∆T (3)

bfh = βfh

√
1− (afh)2 (4)

with xfh being the 3D position and ẋfh the velocity of a
particle, ∆T is a constant representing the time interval (in
second) between two consecutive frames, Fx is a random
variable generated using a multivariate standard normal dis-
tribution (Fx ∼ N3(0, I3)), and αfh and βfh are parameters
chosen to model the motion of a drone. The expression
Fx represents the process noise in the speed of the source
between each update. Variables afh and βfh stand for the
damping factor and the excitation factor, respectively. The
particles can be in one of three motion states: Stationary,
Constant Velocity, or Acceleration. When the filter is instan-
tiated and when resampling is done, each particle is given a
random motion state according to a given PDF.

B. Instantaneous Probability

The probability P fk that each observation (qfk , e
f
k) is

generated by an active sound source, without being a false
detection, is obtained from efk and the threshold ET :

P fk =

{
(efk/ET )2/2, efk ≤ ET
1− (efk/ET )−2/2, efk > ET

(5)

C. Observation Assignation

Each observation (qfk , e
f
k) is assigned to a state: a false

detection (hypothesis H1), a new source (hypothesis H2)
or the currently tracked source (hypothesis H3). The state
hypothesis variable φfk(c) and its possible values are listed
in (6), with Φfc representing the realization of the scenario c
as given by (7). For instance, the realization of the scenario
Φfc = {1, 3, 3} indicates that the observation (qf1 ,ef1 ) is a
false detection, and the observations (qf2 ,ef2 ) and (qf3 ,ef3 )
correspond to the source being tracked. There are C =
(S + 2)K different possible assignation scenarios, where S



stands for the number of source detected (S = 0 or S = 1).

φfk(c) =


1, H1 : (False Detection)
2, H2 : (New Source)
3, H3 : (Existing Source)

(6)

Φfc =
{
φf1 (c), . . . , φfK(c)

}
(7)

The probability P (Φfc |Q1:f ) of the occurrence of an
assignation scenario given the observations is obtained using
the Bayes rule:

P (Φfc |Q1:f ) =
P (Q1:f |Φfc )P (Φfc )
C∑
c=1

P (Q1:f |Φfc )P (Φfc )

(8)

The expression Q1:f stands for all the observations from
the frame 1 to the current frame f . Observations are as-
sumed to be conditionally independent and can therefore be
represented as in (9). The expression q1:f

k consists of all the
observations of the vector qfk from frame 1 to the current
frame f . The same hypothesis is assumed for the individual
assignations, leading to (10).

P (Q1:f |Φfc ) =

K∏
k=1

p(q1:f
k |φ

f
k(c)) (9)

P (Φfc ) =

K∏
k=1

p(φfk(c)) (10)

For the False Detection and New Source hypotheses, the
conditional probability p(q1:f

k |φ
f
k) in (11) is uniform over

the area of the virtual unit hemisphere. For the Existing
Source hypothesis, the conditional probability depends on
the previous weights of the particle filter ωf−1

h , which cor-
responds to the probability the sound source is at the position
of the particle given the observations, that is p(xf−1

h |q1:f−1
k ).

The probability that the observation occurs given the current
position of the particles is expressed by p(qfk |x

f
h):

p(q1:f
k |φ

f
k(c)) =


1/2π, φfk(c) = 1, 2
H∑
h=1

ωf−1
h p(qfk |x

f
h), φfk(c) = 3

(11)
The prior probability p(φfk(c)) depends on the a priori

probabilities that a new source appears (Pnew) and that a
false detection occurs (Pfalse), and on the probability P fk
defined previously:

p(φfk(c)) =


(1− P fk )Pfalse, φfk(c) = 1

P fk Pnew, φfk(c) = 2

P fk , φfk(c) = 3

(12)

The probabilities that the observation qfk is associated to
each state are given by (13). The expression δx,y refers to
Kronecker delta. The expressions P1|qf

k
, P2|qf

k
and P3|qf

k
are

normalized such that P1|qf
k

+ P2|qf
k

+ P3|qf
k

= 1.

Pu|qf
k

=

C∑
c=1

δu,φf
k(c)P (Φfc |Q1:f ) 1 ≤ u ≤ 3 (13)

D. Particle Filter Instantiation

PF is initialized when P2|qf
k
> Tnew for all MAs. To

remove false detections caused by sporadic high energy
noise, the previous condition needs to be met over Fnew
consecutive frames. When this happens, each particle has
its position xfh and velocity ẋfh drawn from multivariate
Gaussian distributions, given by:

xfh ∼ N3(µpos,Σpos) (14)

ẋfh ∼ N3(µvel,Σvel) (15)

The mean vector µvel and the covariance matrices Σpos

and Σvel are chosen to model the flying behavior of a drone.
The covariance matrices Σpos and Σvel are diagonal and
have variances of σ2

pos and σ2
vel, respectively:

Σpos = σ2
posI3 (16)

Σvel = σ2
velI3 (17)

The parameter µpos corresponds to the best estimation
of the actual drone position. This position should lie at the
intersection of the DOAs from all MAs. However, the DOAs
obtained from the observation vectors qfk do not usually
intersect perfectly, as there is always an error in the measured
position and orientation of the MAs, and the estimated DOA
direction. The Ray to Ray algorithm [20], as illustrated by
Fig. 3, is used to determine the shortest distance between
two skew lines. It is applied to find the closest point in 3D
(Zfab) to the intersection of each pair of DOAs, qfa and qfb ,
where La and Lb stand for the position of MAs k = a
and k = b, respectively. This solution is appealing by its
simplicity since the PF can initialize its particles with a raw
estimate of the source position. The optimal solution would
be to minimize the angle between the observations and the
estimated point. Although more precise, this method would
be computationally costly and would make little difference
in the overall tracking precision.

For K MAs, there are K(K−1)/2 pairs, and the estimated
position vector µpos is obtained using:

µpos =
2

K(K − 1)

K∑
a=1

K∑
b=a+1

Zfab (18)

The nearest point Zfab is obtained by projection:

Zfab =
La +Gfab,aq

f
a + Lb +Gfab,bq

f
b

2
(19)

The difference between the position of two different MAs
a and b is given by (20) and the scalar values Gfab,a and
Gfab,b are defined in (21) and (22).

dab = La − Lb (20)



Gfab,a =
(qfa · q

f
b )(qfb · dab)− (qfb · q

f
b )(qfa · dab)

(qfa · qfa)(qfb · q
f
b )− (qfa · qfb )2

(21)

Gfab,b =
(qfa · qfa)(qfb · dab)− (qfa · q

f
b )(qfa · dab)

(qfa · qfa)(qfb · q
f
b )− (qfa · qfb )2

(22)

Fig. 3. Ray to Ray shortest distance algorithm

The motion states of the particles are chosen randomly,
and weights ωfh are given a constant value of 1/H .

E. Particle Filter Removal

To find out if the source is no longer active, a threshold
Tremove is fixed. When the probability P1|qfk

stays under
this threshold for at least Fremove frames, PF is no longer
updated and tracking stops (S = 0).

F. Particle Weights Update

At each new frame, the state of the particles are pre-
dicted and their weights are updated iteratively according
to (23). Since each observation is independent, the prob-
ability p(xfh|Qf ) of the particle xfh being the source of
the observations Qf is given by (24). The first part of the
expression allows the particles to survive even if there is a
false detection.

ωfh =
ωf−1
h p(xfh|Qf )

H∑
h=1

ωf−1
h p(xfh|Qf )

(23)

p(xfh|Q
f ) =

K∏
k=1

((
1− P3|qf

k

) 1

H
+ P3|qf

k
p(xfh|q

f
k)

)
(24)

The probability p(xfh|q
f
k) that a particle position fits the

observations is obtained from the following normalization:

p(xfh|q
f
k) =

p(qfk |x
f
h)∑H

h=1 p(q
f
k |x

f
h)

(25)

The expression p(qfk |x
f
h) defined in (26) represents the

probability that observation is realized given the position of
the source in the particle h:

p(qfk |x
f
h) =

1√
2πσ2

θ

exp

(
(θfk,h − µθ)2

2σ2
θ

)
(26)

The difference in angle between the particle xfh and the
actual observation vector qfk is used to find a deviation angle
θfk,h in radians, obtained with the dot product projection:

θfk,h = arccos
qfk · x

f
h

|qfk ||x
f
h|

(27)

G. Resampling and Estimated Position

The estimated position x̂f is given by the sum of the
product of the weights and position of particles, as expressed
by (28).

x̂f =

H∑
h=1

xfhω
f
h (28)

Resampling is required when the weight diversity goes be-
low a threshold level proportional to the number of particles,
as given by (29). [

H∑
h=1

(ωfh)2

]−1

< αH (29)

III. EXPERIMENTAL SETUP AND
METHODOLOGY

For the experiments, we used three 8-microphone MAs
positioned on the ground. Figue 4 shows the microphone
configuration for each MA. The audio card 8SoundsUSB
[8], [21] is used to perform sound acquisition on each mi-
crophone at a sample rate of 48000 samples/sec. ManyEars,
an open source framework for SSL, SST and sound source
separation1, is used to perform SSL on each MA. Raw data
on each MA are recorded and processed offline to make
analysis easier.

Fig. 4. Microphone array

Different trials were conducted using a DJI Phantom 2
drone and a Parrot Bebop 2 in controlled outside condi-
tions near our research facility, to tune the parameters of
the system. Table I presents the coefficients used for the
excitation of particles. Table II summarizes the parameters
used for PF. The energy threshold ET , as well as Pnew,
Pfalse and α were set to the same values used in [8] as
these parameters ensure robust performances with different
8-microphone array geometries. The number of frames Fnew
and Fremove, as well as the probability thresholds Tnew

1https://sourceforge.net/projects/manyears/



and Tremove, were set empirically to filter spontaneous brief
noise bursts and ultimately prevent false detections. The
number of particles H was chosen as a compromise between
calculation time and particle diversity. The parameters of the
Gaussian distribution σ2

pos and σ2
vel were set to estimate the

position and speed distribution of a drone after a detection.
The value µvel is a zero vector to provide a speed distribution
in all possible directions. The parameters σ2

θ and µθ were
set empirically to best map the relationship between the
observations and the expected results.

TABLE I
PARTICLE MOTION STATE PARAMETERS

Motion state αfh βfh Probability

Stationary 2 0.05 10%

Constant velocity 0.5 3 40%

Acceleration 1.5 6 50%

TABLE II
SSL PARAMETERS

Parameter Value Parameter Value

ET 600 Tnew 0.75

Pnew 0.005 Tremove 0.3

Pfalse 0.05 Fnew 10

H 500 Fremove 10

σ2
pos 25 α 0.7

σ2
vel 25 µvel

−→
0

σ2
θ 0.0961 µθ 0

IV. RESULTS
To illustrate the feasibility of using PF to derive 3D SLL

using distributed MAs in a realistic setup, we present data
from a trial conducted outside in a meadow, next to a busy
road. The MAs were placed in a triangle configuration on
the ground, each separated by 10 m, as shown by Fig. 5.
A Parrot Bebop 2 drone was used to fly above the three
microphone arrays following various trajectories. A GPS
onboard provides the baseline for the trajectory of the drone.

Fig. 5. Positions of the microphone arrays

Figure 6 presents the baseline trajectories in the x, y, and
z directions (which are parallel to the ı̂, ̂ and k̂ unit vectors).

Results show that the system tracks accurately the drone in
time segments A, C, E, G, I and K. Tracking is performed
with precision in the X and Y directions (i.e., in the ı̂-̂
plane). Precision decreases in the Z direction as elevation
increases. This is explained by the far-field effect that is more
prevalent in the Z direction with the current MAs disposition.
For segments B, D and H, the sound of the drone became
lower than the background noise, which explains why drone
tracking stops. More specifically, in segment D, a noisy truck
drove close to the field where the experiment was performed.
In segment J, the operators, who stood next to the MAs,
talked to each other, and speech interfered with the sound of
the drone. In segment L, a motorized vehicle drove close to
the MAs, and became the loudest sound source tracked.

V. CONCLUSION

This work demonstrates that RW-UAV 3D SSL is feasible
using particle filtering from distributed MAs. To only eval-
uate the capability of combining SSL data from distributed
MAs to derive RW-UAV 3D positions, it assumes that the
loudest sound source is from a RW-UAV and that it domi-
nates the background noise. This allows us to evaluate SSL
3D performance without using other means to filter sound
sources. The next step is therefore to refine the approach by
adding specific features to improve robustness to noise. For
instance, various methods have been proposed to estimate
the background noise [22], [23], [24] and generate time-
frequency masks that make GCC-PHAT more robust to noise
[25], [26], [27]. In future work, we plan to:
• Apply a time-frequency mask to reduce the contribution

of interfering signals when SSL is performed;
• Perform SST locally on each MA such that both multi-

ple RW-UAVs and interfering sound sources are tracked;
• Perform multi-source tracking to disregard the sound

sources that are under a minimum elevation (i.e., are
not flying in the sky), to make 3D SSL more robust to
interfering sound sources from the ground;

• Build or use a large dataset of drones in flight to infer
the motion state probabilities instead of empirically
finding them.

• Assess performance in terms of robustness, precision
and processing load.
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