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Abstract ManyEars is an open framework for micro-

phone array-based audio processing. It consists of a

sound source localization, tracking and separation sys-

tem that can provide an enhanced speaker signal for

improved speech and sound recognition in real-world

settings. ManyEars software framework is composed of

a portable and modular C library, along with a graph-

ical user interface for tuning the parameters and for

real-time monitoring. This paper presents the integra-

tion of the ManyEars Library with Willow Garage’s

Robot Operating System (ROS). To facilitate the use

of ManyEars on various robotic platforms, the paper

also introduces the customized microphone board and

sound card distributed as an open hardware solution

for implementation of robotic audition systems.

Keywords open source · sound source localization ·
sound source separation · mobile robotics · USB sound

card · open hardware · microphone array

1 Introduction

Autonomous robots must be able to perceive sounds

from the environment in order to interact naturally

with humans. Robots operate in noisy environments,

and limitations are observed in such conditions when
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using only one or two microphones [34]. In that regard,

a microphone array can enhance performances by al-

lowing a robot to localize, track, and separate multiple

sound sources.

Using an array of eight microphones, ManyEars [29–

31] demonstrated that it can, simultaneously and in

real-time, reliably localize and track up to four of the

loudest sound sources in reverberant and noisy environ-

ments [30]. ManyEars can also reliably separate up to

three sources in an adverse environment with a suitable

signal-to-noise ratio improvement for speech recogni-

tion [36,38]. ManyEars needs at least four microphones

to operate, and the number of microphones used in-

fluences the number of sources that can be processed.

It has mostly been used with arrays of eight micro-

phones, to match the maximum number of analog in-

put channels on the sound cards used. ManyEars has

been used on different platforms including Spartacus

[17], SIG2 [38] and ASIMO [36], and as a pre-processing

module for improved speech recognition [33,37,39,40].

Many components of ManyEars are also used in HARK

(HRI-JP Audition for Robots with Kyoto University)

[20], an open source real-time system that also inte-

grates new localization techniques such as GEVD MU-

SIC (Generalized EigenValue Decomposition Multiple

Signal Classification) and GSVD-MUSIC (Generalized

Singular Value Decomposition Multiple Signal Classifi-

cation) [19,21,24].

The first implementation of ManyEars and HARK

both rely heavily on FlowDesigner [16,28], an open

source data flow development environment used to build

complex applications by combining small and reusable

building blocks. To facilitate maintenance and porta-

bility, ManyEars is now implemented in C as a mod-

ular library, with no dependance on external libraries.

The source code is available online [11] under the GNU
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GPL license [9]. A Graphical User Interface (GUI) (also

available online [13]) is used to display in real-time the

tracked sound sources and to facilitate configuration

and tuning of the parameters of the ManyEars library.

This paper presents these implementations and their in-

tegration to Willow Garage’s Robot Operating System

(ROS) [26].

To make use of the ManyEars library, a computer,

a sound card and microphones are required. ManyEars

can be used with commercially available sound cards

and microphones. However, commercial sound cards

present limitations when used for embedded robotic ap-

plications: they are usually expensive; they have func-

tionalities such as sound effects, integrated mixing, op-

tical inputs/outputs, S/PDIF, MIDI, numerous analogs

outputs, etc., which are not required for robot audi-

tion; they also require significant amount of power and

size. The EAR sensor has been proposed as an alter-

native [2], but it remains large and has strong coupling

with the software which runs on a Field-Programmable

Gate Array (FPGA). With ManyEars, computations

are done on an onboard computer not embedded to the

sound card, to facilitate portability and maintenance.

To this end, the paper also introduces the customized

microphone acquisition board and a 8-input sound card

distributed as an open hardware alternative for robotic

audition systems.

The paper is organized as follows. Section 2 presents

the revised implementation of ManyEars as an open

source C library. Section 3 introduces the GUI and ex-

plains ManyEars’ portability by presenting its integra-

tion to ROS. Section 4 describes ManyEars’ open hard-

ware components and section 5 presents test cases to

illustrate the use of the implemented framework.

2 ManyEars

Figure 1 illustrates the software architecture of Many-

Ears Library. It is composed of five modules: Prepro-

cessing, Localization, Tracking, Separation and Post-

processing. These modules receive inputs and generate

data using the Microphones, Potential Sources, Tracked

Sources, Separated Sources and Postfiltered Sources

data structures. In the following subsections, each of

the five modules is described, along with the equations

explaining what is implemented in the code. The pa-

rameters provided were set empirically to be robust

to environmental changes, unless mentioned otherwise.

More detailed explanations and justifications of these

equations and parameters are available in [30] (Prepro-

cessing, Localization and Tracking) and in [32] (Separa-

tion and Postprocessing). Also note that in this section,

the variables m, l and k stand for the microphone, the

frame and the bin indexes, respectively.

2.1 Preprocessing Module

The Preprocessing Module uses a MicST (Microphone

Signal Transform) data structure to transform the time-

domain signal of each microphone (sampled at 48000

samples/sec) in weighted frequency frames, as shown

in Figure 2. The Preprocessor function transforms the

microphone signal in the time domain into many in-

dividual frames of N = 1024 samples. Each frame is

multiplied by a power-complementary window and then

transformed in the frequency domain with a Fast Fourier

Transform (FFT), which leads to X l
m[k]. The MCRA

(Minimum Controlled Recursive Averaging) function is

used to estimate the spectrum of the stationary noise

(λs)lm[k] during silence periods [3]. The frames are ini-

tialized with zero values at frame l = 0 in equation

1, and then updated recursively. The weighting factor

ζlm[k] is then computed at each frequency bin accord-

ing to equations 2, 3, and 4. The variables ξlm[k] and

(λr)lm[k] respectively represent the estimation of the a

priori Signal-to-Noise Ratio (SNR) and the reverber-

ation estimation [6,7]. The parameter αd = 0.1 is the

adaptation rate, γ = 0.3 the reverberation decay for

the room, and δ = 1.0 the level of reverberation. These

parameters need to be adjusted to the environment.

(λr)0m[k] = 0

0 ≤ m < M, 0 ≤ k < N
(λs)0m[k] = 0

ξ0m[k] = 0

ζ0m[k] = 0

(1)

(λr)lm[k] = γ(λr)l−1
m [k] +

(1− γ)

δ

∣∣ζl−1
m [k]X l−1

m [k]
∣∣2 (2)

ξlm[k] =
(1− αd)

∣∣ζl−1
m [k]X l−1

m [k]
∣∣2 + αd

∣∣X l
m[k]

∣∣2
(λr)lm[k] + (λs)lm[k]

(3)

ζlm[k] =
ξlm[k]

ξlm[k] + 1
(4)

2.2 Localization Module

Figure 3 illustrates the block diagram of the Localiza-

tion Module. The Microphones data structure contains

the cartesian positions (in meters) for each microphone

in relation to the center of the array. A uniform unit
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Fig. 2: Block diagram of the Preprocessing Module

sphere (with a 1 meter radius) is generated at the ini-

tialization of the Sphere data structure. This sphere

is recursively generated from a tetrahedron, for a to-

tal of 2562 points. This resolution can be adjusted to

satisfy real-time requirements. The delay between each

pair of microphones for sound propagation of a source

is precomputed at each point on the sphere during ini-

tialization of the Delays data structure, and stored in

an array. Each delay corresponds to the direct path

of sound, even if this hypothesis is influenced by the

diffraction due to the body of the robot. However, ex-

periments show that the system still performs well as

long as a few microphones capture the direct path [30].

The cross-correlation Rlm1,m2
(τ) between microphones

m1 and m2 is then computed for each new frames ac-

cording to equation 5, with τ representing the delay.

Rlm1,m2
(τ) =

N−1∑
k=0

ζlm1
[k]X l

m1
[k]

|X l
m1

[k]|
ζlm2

[k]X l
m2

[k]∗

|X l
m2

[k]|
e(

j2πkτ
N )

(5)

To speed up computations, equation 5 is performed

with an inverse Fourier Transform (IFFT). Although

the IFFT reduces the number of operations, this step

remains one of the most computationally expensive part

of ManyEars. Moreover, since this operation is done

for each pair of microphones, the complexity order is

O(M(M − 1)/2), where M is the number of micro-

phones1. Beamformer search is performed [30] and im-

plemented in the Beamformer function. Once Q poten-

tial sources are found, their positions and probabili-

ties are stored in the Potential Sources data structure.

The position (x, y, z) of each potential source q is re-

presented by the observation vector Ol
q. The probability

P lq for each potential source q to be a true source (and

not a false detection) is computed according to equation

6. The variable El0 stands for the energy of the beam-

former for the first potential source, and the constant

ET = 600 represents the energy threshold adjusted to

the environment (to find a good trade-off between false

and missed sources detections). Experiments showed

that the energy of the first potential source is related to

the confidence that this is a valid source, while this is

1 Set by parameter GLOBAL MICSNUMBER in the file
parameters.h
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not the case for the next potential sources [30]. For this

reason, the probability depends on the energy for q = 0

and is then associated to a constant value found empiri-

cally for the other sources (0 < q < Q). The probability

for the first source is null when the energy is null, and

goes to one as the energy goes to infinity. Moreover, it

is relevant to notice that these probabilities are inde-

pendent (
∑Q−1
p=0 P

l
q 6≡ 1, 0 ≤ El0 <∞).

P lq =



(El0/ET )2/2, q = 0, El0 ≤ ET
1− (El0/ET )−2/2 q = 0, El0 > ET

0.3 q = 1

0.16 q = 2

0.03 q = 3

(6)

Weighted spectrum 0

Sphere Delays

Potential Sources
Sources positions

Sources probabilities

Beamformer
Search algorithms

Rij

Microphones
Microphones positions

Points positions

IFFTs
Weighted spectrum 1

Weighted spectrum 7

...

Fig. 3: Block diagram of the Localization Module

2.3 Tracking Module

Figure 4 represents the block diagram of the Track-

ing Module. There is a particle filter for each tracked

source, represented by the Filter functions. There are

S tracked sources and filters, each made of F particles.

Each tracked source is assigned a unique ID and a po-

sition. The ID of a source stays the same over time as

long as the source is active.

Filter

...

List of filtersPotential Sources
Sources positions

Sources probabilities

Tracked Sources
Sources IDs

Sources positions

Filter

Fig. 4: Block diagram of the Tracking Module

The state vector of each particle, sls(f) = [(xls(f))T

(ẋls(f))T ]T , is composed of a (x, y, z) position, xls(f),

Table 1: Particle parameters

State αls(f) βls(f) Ratio

Stationary 2 0.04 10%
Constant velocity 0.05 0.2 40%
Acceleration 0.5 0.2 50%

and a velocity, ẋls(f), where (.)T denotes the transpose

operator. The beamformer provides this module with

an observation vector for each frame l and potential

source q, denoted by the variable Ol
q. These observa-

tion vectors are concatenated in a single vector Ol =[
Ol

0, . . . ,O
l
Q−1

]
. Moreover, the vector O1:l = {Oi, i =

1, . . . , l} stands for the set of all observations over time

from frame 1 to frame l.

During prediction, the position xls(f) and velocity

ẋls(f) of each particle f for source s are updated ac-

cording to equations 7 and 8. The parameters als(f) and

bls(f) stand for the damping and the excitation terms,

respectively. They are obtained with equations 9 and

10. The parameters αls(f) and βls(f) are chosen accord-

ing to the state of each particle. These values and the

proportion of particles associated to each state are pro-

vided in Table 1. The parameter ∆T = 0.04 stands for

the time interval between updates. These three param-

eters are set to optimize tracking for both static and

moving sound sources, and are robust to environmen-

tal changes since the source dynamics is independent of

reverberation and noise. The variable Fx represents a

normally distributed random variable.

xls(f) = xl−1
s (f) +∆T ẋls(f) (7)

ẋls(f) = als(f)ẋl−1
s (f) + bls(f)Fx (8)

als(f) = e−α
l
s(f)∆T (9)

bls(f) = βls(f)
√

1− als(f)2 (10)

The position of each particle is normalized such that

each particle stays on the unit sphere. The velocity is

also normalized to ensure it is tangent to the sphere

surface.

Each observation Ol
q is either a false detection (hy-

pothesis H0), a new source not yet being tracked (hy-

pothesis H2) or matches one of the sources currently

tracked (hypothesis H1). The function glc(q) showed in

equation 11 maps each observation Ol
q to a hypothesis.
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The vector glc introduced in equation 12 concatenates

the mapping functions of all observations in a vector.

glc(q) =



−2, H0 : Ol
q is a false detection

−1, H2 : Ol
q is a new source

0, H1 : Ol
q → source s = 0

...

S − 1, H1 : Ol
q → source s = S − 1

(11)

glc =
{
glc(q), q = 0, . . . , Q− 1

}
(12)

The variable c stands for the index of each reali-

sation of the vector glc. There are (S + 2)Q possible

realisations, as demonstrated in equation 13.

gl0 = { −2 , . . . , −2 , −2 }
gl1 = { −2 , . . . , −2 , −1 }
gl2 = { −2 , . . . , −2 , 0 }
gl3 = { −2 , . . . , −2 , 1 }

...
...

glS = { −2 , . . . , −2 , S − 2 }
glS+1 = { −2 , . . . , −2 , S − 1 }
glS+2 = { −2 , . . . , −1 , −2 }
glS+3 = { −2 , . . . , −1 , −1 }

...
...

gl(S+2)Q−2 = { S − 1 , . . . , S − 1 , S − 2 }
gl(S+2)Q−1 = { S − 1 , . . . , S − 1 , S − 1 }

(13)

The expression P (glc|O1:l) stands for the probabil-

ity of a realisation glc given the observations O1:l. Equa-

tion 14 introduces an alternative representation derived

from Bayes inference.

P (glc|O1:l) =
P (O1:l|glc)P (glc)

(S+2)Q−1∑
c=0

P (O1:l|glc)P (glc)

(14)

Conditional independence is assumed for the obser-

vations given the mapping function (P (O1:l|glc)), which

leads to the decomposition expressed by equation 15.

Independence of mapping functions is also assumed,

and therefore the a priori probability P (glc) is decom-

posed as shown in equation 16.

P (O1:l|glc) =

Q−1∏
q=0

p(O1:l
q |glc(q)) (15)

P (glc) =

Q−1∏
q=0

p(glc(q)) (16)

The probability distribution of the observations given

the hypothesis is uniform for a false detection or a new

source, and depends on the previous weights of the

particle filter (p(xl−1
s (f)|O1:l−1

q )) and the probability

density of an observation given each particle position

(p(O1:l
q |xls(f))), as shown in equation 17.

p(O1:l
q |glc(q)) =

1/4π glc(q) = −2

1/4π glc(q) = −1
F−1∑
f=0

(
p(xl−1

glc(q)
(f)|O1:l−1

q )×
p(Ol

q|xlglc(q)(f))

)
0 ≤ glc(q) < S

(17)

The a priori probability p(glc(q)) shown in equation

18 depends on the a priori probabilities that a new

source appears and that there is a false detection. These

values are represented by the variables Pnew = 0.005

and Pfalse = 0.05. The probabilities that a source is

observable and is a true source are represented by the

variables P (Obsls|O1:l−1) and P lq, respectively.

p(glc(q)) =


(1− P lq)Pfalse glc(q) = −2

P lqPnew glc(q) = −1

P lqP (Obsls|O1:l−1) 0 ≤ glc(q) < S

(18)

Equation 19 shows that, given the previous observa-

tions O1:l−1, the probability that the source s is observ-
able (P (Obsls|O1:l−1)) depends on the probability that

the source exists (P (Els|O1:l−1)) and is active

(P (Als|O1:l−1)).

P (Obsls|O1:l−1) = P (Els|O1:l−1)P (Als|O1:l−1) (19)

The probability that a source is active, P (Als|O1:l−1),

is obtained with a first order Markov process. The tran-

sition probabilities between states are given by the ex-

pressions P (Als|Al−1
s ) = 0.7 and P (Als|¬Al−1

s ) = 0.3,

which respectively represent the probability a source

remains active and becomes active.

P (Als|O1:l−1) = P (Als|Al−1
s )P (Al−1

s |O1:l−1)+

P (Als|¬Al−1
s )(1− P (Al−1

s |O1:l−1))

(20)

The active and inactive states are assumed to be

equiprobable, and therefore the probability of activity
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P (Al−1
s |O1:l−1) is obtained with Bayes’rule in equation

21.

P (Al−1
s |O1:l−1) =(

1 +
(1− P (Al−1

s |O1:l−2))(1− P (Al−1
s |Ol−1))

P (Al−1
s |O1:l−2)P (Al−1

s |Ol−1)

)−1

(21)

Equation 22 introduces P (Al−1
s |Ol−1), which stands

for the probability a source is active. This relation is

introduced in equation 22 with parameters Pb = 0.15

and Pm = 0.85.

P (Al−1
s |Ol−1) = Pb + PmP

l−1
s (22)

The expression P l−1
s stands for the probability that

the tracked source s is observed, which is obtained from

the sum of the probabilities that this source is assigned

to each potential source q (P l−1
s (q)), as expressed by

equation 23.

P l−1
s =

Q−1∑
q=0

P l−1
s (q) (23)

Setting the a priori probability a source exists but is

not observed to be P0 = 0.5, the probability the source

exists, P (Els|O1:l−1), is obtained with equation 24.

P (Els|O1:l−1) = P l−1
s +

(1− P l−1
s )PoP (El−1

s |O1:l−2)

1− (1− Po)P (El−1
s |O1:l−2)

(24)

The expression P (glc|O1:l) derives the probabilities

that a new source is observed (P lH2
(q)), the source s is

observed (P ls(q)) and there is a false detection (P lH0
(q)),

as shown in equations 25, 26 and 27. The expression δx,y
stands for the Kronecker delta. These probabilities are

normalized for each value of q.

P lH0
(q) =

C−1∑
c=0

δ−2,glc(q)
P (glc|O1:l) (25)

P ls(q) =

C−1∑
c=0

δs,glc(q)P (glc|O1:l) (26)

P lH2
(q) =

C−1∑
c=0

δ−1,glc(q)
P (glc|O1:l) (27)

The weight of each particle f is given by the ex-

pression p(xls(f)|O1:l), and is obtained recursively with

equation 28.

p(xls(f)|O1:l) =
p(xls(f)|Ol)p(xl−1

s (f)|O1:l−1)
F−1∑
f=0

p(xls(f)|Ol)p(xl−1
s (f)|O1:l−1)

(28)

The observations may or may not match the tracked

sources. The event I ls occurs when the source s is ob-

served at frame l. The probability of this event is equal

to the expression P ls. The expression p(xls(f)|Ol) stands

for the probability the observation Ol matches the par-

ticle xls(f), and is obtained in equation 29.

p(xls(f)|Ol) = p(¬I ls)p(xls(f)|Ol,¬I ls)+
p(I ls)p(x

l
s(f)|Ol, I ls)

(29)

When the event I ls does not occur, all particles have

the same probability (1/F ) to match the observations.

The probability that the particle f matches the obser-

vation Ol (p(xls(f)|Ol), I ls) is obtained from the prob-

ability each potential source Ol
q matches the particle f

(p(Ol
q|xls(f))). The denominator is needed to normalize

the expression, as shown in equation 30.

p(xls(f)|Ol) = (1− P ls)(1/F )+

P ls


Q−1∑
q=0

P ls(q)p(O
l
q|xls(f))

F−1∑
f=0

Q−1∑
q=0

P ls(q)p(O
l
q|xls(f))


(30)

The expression p(Ol
q|xls(f)) is obtained with the

sum of gaussians shown in equation 31, and the variable

d stands for the distance between the particle and the

observation, as shown in equation 32. The initial model

is inspired from a gaussian distribution that matches

the distribution of the potential sources obtained from

the beamformer. The model is then tuned empiricially

to fit more accurately the observations, generating the

distribution in equation 31.

p(Ol
q|xls(f)) = 0.8e−80d + 0.18e−8d + 0.02e−0.4d (31)

d =
∥∥xls(f)−Ol

q

∥∥ (32)

The estimated position of the tracked source (xtrk)ls
is finally obtained with equation 33.
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(xtrk)ls =

F−1∑
f=0

p(xls(f)|O1:l)xls(f) (33)

This estimated position is sent to the tracked source

structure, along with the source ID. Resampling is re-

quired when the particle diversity is lower than a pre-

defined level (Nmin = 0.7F ), as shown in equation 34.

1
F−1∑
f=0

(p(xls(f)|O1:l))2

< Nmin (34)

A new source may be added if P lH0
(q) exceeds a

threshold (fixed to 0.5), and a new filter is then assigned

to this source. Each new source is assigned an ID. A

source s being tracked can also be deleted when it stays

inactive for too long (P ls < 0.5 for l = (lnow − 24) : 1 :

lnow, where lnow is the index of the current frame). All

currently tracked sources and their respective IDs are

stored in the Tracked Sources data structure.

2.4 Separation Module

Figure 5 illustrates the Separation Module block dia-

gram. Geometric Source Separation (GSS) is performed

with the unmixing matrix Wl[k] in the GSS function,

as expressed by equation 35. This matrix is initialized

with the information from the Tracked Sources and the

Microphones. This matrix is then optimized using equa-

tions 36 and 37 in order to minimize the independence

(J1) and geometric (J2) costs. The gradient is used as

it is a fast-convergence and low-complexity minimiza-

tion solution [25]. The matrices I and A stand for the

identify matrix and the direct propagation delays ma-

trix, respectively. The matrix A is defined in equation

38, and the variable τ lm,s stands for the delay in sam-

ples at frame l, when sound leaves source s and reaches

microphone m.

Yl[k] = Wl[k]Xl[k] (35)

∂J1(Wl[k])

∂(Wl)∗[k]
= 4

(
El[k]Wl[k]Xl[k]

)
Xl[k]H (36)

∂J2(Wl[k])

∂(Wl)∗[k]
= 2[Wl[k]Al[k]− I]Al[k]H (37)

Al[k] =


ej2πkτ

l
0,0 . . . ej2πkτ

l
0,s

...
. . .

...

ej2πkτ
l
m,0 . . . ej2πkτ

l
m,s

 (38)

Update is performed with equation 39. The vari-

ables λ = 0.5 and µ = 0.001 stand for the regularization

factor and the adaptation rate, respectively.

W(l+1)[k] = (1− λµ)Wl[k]−

µ

[∥∥∥Rmm
l[k]
∥∥∥−2

∂J1(W
l[k])

∂(Wl)∗[k]
+ ∂J2(W

l[k])
∂(Wl)∗[k]

]
(39)

The covariance matrix of the microphones Rmm
l[k],

the covariance matrix of the separated sources Rss
l[k]

and the intermediate expression El[k] are defined in

equations 40, 41 and 42. These covariance matrices are

obtained with instantaneous estimations and thus

greatly reduce the amount of computations required.

This approximation is similar to the Least Mean Square

adaptive filter [12]. The operator diag sets all nondiag-

onal terms to zero.

Rmm
l[k] = Xl[k]Xl[k]H (40)

Rss
l[k] = Yl[k]Yl[k]H (41)

El[k] = Rss
l[k]− diag(Rss

l[k]) (42)

The spectra of the separated sources and their cor-

responding IDs (the same as for the tracked sources)

are defined in the Separated Sources data structure.

Post-filtering is then performed on the separated

sources. A gain is applied to the separated signals, as

expressed by equation 43. The gain is computed accord-

ing to interference and stationary noise [32].

Zls[k] = Gls[k]Y ls [k] (43)

Moreover, this step requires a MCRA function for

each separated source to estimate the stationary noise.

The new spectra and their corresponding IDs (the same

as for both the tracked and separated sources) are de-

fined in the Postfiltered Sources data structure.
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Tracked Sources
Sources IDs

Sources positions

Separated Sources
Sources IDs

Sources spectra

Postfiltered Sources
Sources IDs

Sources spectra

GSS

Spectrum 0
Spectrum 1

Spectrum 7

...
Unmixing

matrix
Cost

PostfilterMicrophones
Microphones positions

MCRA

Fig. 5: Block diagram of the Separation Module

2.5 Postprocessing Module

As illustrated by Figure 6, the separated and postfil-

tered spectra from the Separated Sources and the Post-

filtered Sources are then converted back to the time do-

main with IFFTs by the Postprocessor function. The

new frames are then windowed and overlap-added to

generate the new signals. Power-complementary win-

dows are used for analysis and synthesis, and therefore

overlap-add is required to achieve signal reconstruction.

WindowIFFT

Postprocessor

WindowIFFT

Separated signals
(time domain)

Postfiltered signals
(time domain)

Separated Sources
Sources IDs

Sources spectra

Postfiltered Sources
Sources IDs

Sources spectra

... ...

WindowIFFT

WindowIFFT

... ...

...

...

Fig. 6: Block diagram of the Postprocessing Module

3 The ManyEars Open Software Library

Integrated to ROS

Implementation of ManyEars as an open software li-

brary with ROS involves translating the description of

the architecture and algorithms presented in Section 2

into software processes, developing a Graphical User In-

terface (GUI) to visualize the tracked sound sources and

to fine-tune the parameters of the ManyEars library,

and interfacing the library to the ROS environment.

3.1 Software Processes

ManyEars’ functions, as shown in the block diagrams of

Section 2, are managed according to three stages: Ini-

tialization, Processing, and Termination. Figure 7 illus-

trates these stages. All the parameters are stored in the

structure parametersStruct. This structure is used to

provide parameters to the functionStruct during Ini-

tialization. Memory is also allocated for the elements of

functionStruct during this step. This

functionStruct is then used to perform many process-

ing operations. During Processing, input arguments are

used and output arguments are generated. Moreover,

the elements of functionStruct are updated during

this step. Finally, Termination is performed and the

previously allocated memory is freed.

functionInit
parametersStruct

functionStruct functionStruct

functionProcess
functionStruct functionStruct

inputs outputs

functionTerminatefunctionStruct

Initialization

Processing

Termination

Fig. 7: Software structure of each module

To avoid dependency on external libraries, the fol-

lowing utility functions have been created and are used

to perform various computations:

– Memory allocation. Memory is allocated to align ar-

rays for SSE (Streaming SIMD Extensions) opera-

tions.

– FFT and IFFT. The FFT and IFFT operations are

performed with a decimation-in-frequency radix-2

algorithm, which is optimized with SSE instructions.

Moreover, since the signals are real in the time do-

main, two transforms are performed with each com-

plex FFT or IFFT.

– Matrix operations. Most operations are performed

on vectors and matrices. For this reason, customized

functions for operations on vectors and matrices are

created, and make use of SSE instructions.

– ID Manager. An ID manager is used to generate

unique IDs to identify tracked, separated and post-

filtered sources.

– Linear correlation. Linear correlation in the time do-

main is needed for the Postfiltering Module. This

operation is also optimized with SSE instructions.

– Random number generator. Used by the Tracking

Module, this function generates random numbers

according to a uniform or a normal distributions.

– Transcendental function. This function estimates a

confluent hypergeometric function for the Postfilter-

ing Module.
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– Window generation. This function generates a Han-

ning window for the Postfiltering Module. A power-

complementary window is also generated for the Pre-

processing Module and the Postprocessing Module.

3.2 Graphical User Interface

Figure 8 shows the GUI created for tuning parameters

of the ManyEars Library. The GUI is a complementary

tool not essential to use with the ManyEars Library. It

consists of the following subwindows:

1. Microphone positions, beamformer configuration,

source tracking and separation parameters. Param-

eters can be saved to and loaded from a file for rapid

configuration.

2. Probabilities of sources calculated by the Localiza-

tion Module in latitude.

3. Probabilities of sources calculated by the Localiza-

tion Module in longitude.

4. Outputs of the Tracking Module in latitude.

5. Outputs of the Tracking Module in longitude.

6. 3D unit-sphere representation of the Tracked

Sources.

7. Customizable colour representation of the informa-

tion displayed by the GUI.

When the ManyEars GUI starts, the user selects to

process the audio data either from a pre-recorded raw

file or in real-time from the sound card. The application

menu allows the user to start or stop processing and

to select the audio input. Once the processing starts,

subwindows (2) through (6) are updated as the audio

input is being processed. The recorded data can also be

saved to a raw file.

The GUI is implemented with the Qt4 framework

[22] because of its flexibility, its open source licence and

for the ability to create cross-platform applications.

3.3 ROS Integration

Figure 9 illustrates the integration of the ManyEars li-

brary with ROS [26]. Oval shapes represent ROS nodes,

and rectangular shapes represent topics.

The integration with ROS is done with multiple sim-

ple nodes:

– rt_audio_publisher. This node publishes the raw

audio data coming from the sound card in a ROS

message called AudioStream containing the frame

number and the stream data of all the microphones

in 16 bits signed little endian format. The default

publication topic is /audio_stream.

/rt_audio_publisher

/audio_stream
(manyears_ros/AudioStream)

/manyears_ros

/tracked_sources
(manyears_ros/ManyEarsTrackedAudioSource)

/sound_position_exploitation /manyears_savestream

/source_pose
(geometry_msgs/PoseStamped)

Fig. 9: ManyEars-ROS nodes organization

– manyears_ros. This node uses the raw stream infor-

mation published in rt_audio_publisher and ex-

ecutes the sound source localization, tracking and

separation algorithm. It can use parameters saved

by the ManyEars GUI described in Section 3.2. A

message called ManyEarsTrackedAudioSource is

published for each frame processed. This message

contains an array of tracked sources of ROS mes-

sage type SourceInfo. Each element of the array

describes the source properties (ID, position, energy

estimation, separation data, longitude, latitude).
The default publication topic is /tracked_sources.

– manyears_savestream. This node connects to the

manyears_ros node and uses the separation_data

field in the SourceInfo ROS message to save the

separated audio into WAV format files. This node

can be used to listen to separated data. No ROS

message is transmitted from this node. However, in-

stead of saving to file the audio data in WAV for-

mat, the node could be easily modified to publish

the audio data on a topic. This would be useful for

other nodes that use single audio streams like speech

recognition engines.

– sound_position_exploitation. This node is re-

sponsible for publishing pose information for each

of the detected sound source. The node connects to

the tracked_sources topic and outputs the right

geometry_msgs::PoseStamped message with the

correct orientation and unit distance from the cen-

ter of geometry of the microphone array. The default

publication topic is source_pose. Figure 10 shows
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!

1

42

3 5

6 7
Fig. 8: ManyEars GUI

the result of the position data published with this

node and visualized with the ROS RViz application.

4 Open Hardware Microphone Acquisition

Board and 8-Input Sound Card

The design of a microphone acquisition board and a 8-

input sound card specifically for ManyEars satisfy the

following guidelines:

– Have small microphone boards powered by the sound

card directly. Connectors must allow hot-plugging

and must be low-cost. Installation of microphones

must be easy.

– Minimalist design supporting up to eight microphone

inputs and one stereo output.

– Minimize physical dimensions for installation on a

mobile robot.

– Low power consumption and support of a wide range

of power supply voltage.

– Minimum signal resolution of 12 effective bits and

sampling rates from 8 to 192 kSamples/sec.

– Fabrication cost comparable or lower to commercial-

ly-available sound cards.

– Compatible with multiple operating systems (Linux,

MacOS, Windows).

– Processing of the ManyEars algorithm is done ex-

ternally, on the host computer, reducing processing

power requirements on the sound card and facilitat-

ing portability and maintainability.

(a) Top (b) Back

Fig. 11: Microphone board

Figure 11 shows one of the microphone boards de-

signed. Each microphone board has its own preampli-

fier circuit, which is powered by the sound card at 4.3

V. The main electronic components on the top side of

the board include the omnidirectional microphone (CUI

CMA-4544PF-W) and the preamplifier (STMicroelec-

tronics TS472). The frequency response of the electret

microphone is relatively flat from 20 Hz to 20 kHz. The

back side of the board is composed of the RJ-11 con-

nector (low-cost standard telephone jack style) and a

potentiometer for easy preamplifier gain adjustment.

Parallel insertion of the RJ-11 connector prevents the
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Fig. 10: Visualization of sound source position using ROS RViz

power line from making contact with the data line when

insertion occurs, making the connection hot pluggable.

Signals are mapped to the RJ-11 connector lines such

that a standard telephone cable can be used. The con-

nector also has a latch mechanism, which ensures reli-

able physical connections. The preamplifier has a high

signal-to-noise ratio (more than 70 dB according to the

TS472 datasheet), differential input and output chan-

nels and a maximum closed loop gain of approximately

40 dB, required to obtain a peak-to-peak amplitude of

4.3 V at the output. This maximizes the dynamic range

of the codecs used by the sound card. Moreover, the mi-

crophone preamplifiers are positioned as close as pos-
sible to the electret microphone in order to reduce the

effects of electromagnetic interference and to preserve

a good signal-to-noise ratio.

To design the sound card, the first step was to choose

the hardware interface to be used. The USB 2.0 High-

Speed interface is a good choice because it is more com-

monly available compared to FireWire, and can be used

directly to power the sound card unlike the standard

Ethernet ports. The USB 2.0 transfer rate reaches 480

Mbits/sec, which is sufficient to transfer the raw (un-

compressed) data of eight microphones and one stereo

output. Recently introduced, the USB Audio Class 2.0

standard [15] includes more channels and better sam-

pling resolutions and rates compared to Audio Class

1.0. The total consumption of the system must not ex-

ceed 2.5 W (500 mA @ 5V) for normal USB configura-

tion. The design is based on the XMOS USB Audio 2.0

Multichannel Reference Design [35] to meet the power

and interface requirements. This standard is convenient

as it is automatically supported by standard drivers

(ALSA for Linux, CoreAudio for OSX). On Windows

platforms, a third party driver provided by XMOS part-

ners is used because the USB Audio Class 2.0 is not

yet supported natively. The XMOS is strictly used to

operate the codec and forward the sound stream to the

host computer (no processing is performed by the sound

card).

Figure 12 shows a block diagram of the hardware

implementation. The analog signal coming from the mi-

crophones is transmitted in differential mode to the

codecs. Differential mode is preferred to single-ended

signalling because of noise immunity and because it in-

creases the dynamic range of the analog/digital con-

verter of the codec. Since the sound card is designed to

operate on a robot, many external devices can induce

electromagnetic interference in the transmitted signal.

Twisted pairs for differential signal transmission dis-

tribute the interference and a differential amplifier re-

jects the common mode noise, which minimizes the ef-

fect of overall electromagnetic interference.

The Preamp module uses a differential audio ampli-

fier (National Semiconductor LME49726) that biases

the signal for the codec’s input and also filters the sig-

nal to avoid aliasing. This audio amplifier is especially

intended for audio and it uses a single power supply.

The band-pass filter in the Preamp module has a flat

frequency response in the audio frequency band and has

a rejection of 20 dB at the low frequencies. The config-

uration of the anti-aliasing filters is the one suggested

by the codec manufacturer. Two four-input codec chips

(Cirrus Logic CS42448) are used for analog to digital
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CODEC 1
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Fig. 12: Hardware Block Diagram

conversion. Data is transfered using the I2S protocol to

the XMOS processor. The codecs are configured with

the I2C protocol.

The XMOS XS1-L2 dual core microprocessor op-

erates at 1000 MIPS and is of particular interest for

mobile applications. Eight threads for each core are in-

dependently activated by events and do not run contin-

uously with the system clock if not used. This reduces

power consumption since only active threads require

power. Threads are scheduled directly by the XMOS

chip, making real-time performances possible without

any operating system. An external PLL (Cirrus Logic

CS2300CP) is used to synchronize the codecs and the

XMOS cores. This is required to avoid jitter in the clock

controlling the sampling of the analog inputs. The orig-

inal XMOS firmware is used from the reference design,

with a small addition to support the second codec. The

firmware is stored in the 512k flash memory connected

via SPI.

An XTAG2 connector (JTAG interface) is used for

programming the SPI flash memory and for debugging.

There is also an expansion port available compatible

with XMOS standard SKT connector for future use.

The XMOS processor is connected to the USB port

using an external USB 2.0 PHY (SMSC USB3318). The

PHY requires a 13 MHz clock to operate.

The sound card also has an external power connec-

tor (from 7 V to 36 V) if USB power is not available or

insufficient. The switching power supply (Texas Instru-

ments PTN78000W) uses the wide range input pow-

er and converts it effienciently to the required 5V. In

case power is supplied both through USB and an exter-

nal power supply, the Power Selection module (Texas

Instruments TPS2111) prioritizes the external power

source. Figure 13 presents a picture of the designed

sound card.

Table 2 summarizes the characteristics of the de-

signed microphone board and sound card. The micro-

phone design files are available online [1] under the Cre-

ative Commons Attribution-ShareAlike 3.0 Unported

license [4]. For the sound card, all the design files, ger-

bers and firmware are available online [1] under the Cre-

ative Commons Attribution-ShareAlike 3.0 Unported

license [4].

5 Demonstration Test Cases

The ManyEars Library comes with many demonstra-

tion test cases available online [11], with parameters
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Fig. 13: Sound card

Table 2: Microphone Board and Sound Card Charac-

teristics

Dimensions
Item Length Width Height

(mm) (mm) (mm)

Microphone 23 23 15
Sound Card 125 74 15

Power Supply
Power Source Voltage Current Power

(V) (A) (W)

External Power 7 0.332 2.324
(without 12 0.192 2.376
microphones) 24 0.114 2.736

36 0.0884 3.182

External (with 7 0.343 2.401
microphones) 12 0.208 2.496

24 0.118 2.843
36 0.0884 3.182

USB (without 5 0.434 2.168
microphones)

USB (with 5 0.449 2.246
microphones)

Maximum with external power 3.182
Maximum with USB power 2.246

Additional Information
Max. sampling latency between channels 16 us
Mean Noise Floor -132 dBV
Maximum Noise Floor -112 dBV

tuned to optimize performance. Two of these test cases

are presented here: one with static sound sources, and

another with moving sound sources. Figure 14 illus-

trates the coordinate system used in these test cases.

The results in this section are displayed with a Mat-

lab/Octave script (demo.m).

x

y

z

longitude

latitude

Floor

Ceiling

Fig. 14: Coordinate system

5.1 Static Sound Sources

This test case uses an 8-microphone cubic array. Ac-

cording to Rabinkin [27], the performance of a beam-

former with speech sources (with a bandwidth between

100 Hz and 4 kHz) is optimized when the spacing be-

tween the microphones varies between 20 cm and 1 m.

A 0.32 m × 0.32 m × 0.32 m array is used to make

the spatial gain uniform and to fit on top of a mobile

robot (e.g., Pioneer 2 platforms). The diameter of each

microphone is 0.8 cm. For the results presented in this

paper, the array is positioned at 0.6 m above the floor,

in a room of 10 m × 10 m × 2.5 m with normal rever-

beration and some audible background noise generated

by fans and other electronics. Two loud speakers with

a diameter of 6 cm are used as sound sources, at a

distance of 1.5 m and separated by 90◦. Each speaker

is placed approximately 0.6 m above the floor. Speech

segments of two female speakers are played during 10

seconds. The signals of the microphones are recorded

and then processed with the ManyEars Library.

Figure 15 represents the longitude and the latitude

of the tracked sound sources. These positions match the

locations of the loud speakers, with the small difference

in latitude caused by the offset between the heights of

the speakers. The localization error of ManyEars has

been characterized to be less than 1◦ [29]. Figure 16 and

Figure 17 show the spectrograms of source 1 and source

2, respectively. Separated and postfiltered spectrograms

match many features in the clean spectrograms. Speech

intelligibility and recognition are evaluated in [36–40].
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(a) Longitude

(b) Latitude

Fig. 15: Positions of the tracked sources

(a) Clean speech

(b) Separated speech

(c) Postfiltered speech

Fig. 16: Spectrograms for source 1

5.2 Moving Sound Sources

To demonstrate the use of ManyEars on a mobile robot

and with an asymmetric array, this test case uses the

microphones array on IRL-1, as shown by Figure 18.

Two scenarios have been evaluated, illustrated by Fig-

ure 19, with human speakers producing uninterrupted

speech sequences:

(a) Clean speech

(b) Separated speech

(c) Postfiltered speech

Fig. 17: Spectrograms for source 2

Fig. 18: IRL-1 with the microphones identified by the

red circles

– Scenario A: The two sources are separated by 90◦

with respect to the xy-plane. They move by 90◦ and

then come back to their initial position.

– Scenario B: The two sources are separated by 180◦

with respect to the xy-plane. They move to the po-

sition of the other speaker and cross each other.

As shown by Figure 20a, the tracked sources match

the positions of the moving sources. In scenario B, the

inertia of the particles used for tracking solve the source

crossing problem. However, sources could have swapped
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if both speakers would have come close to each other at

the same time, and then move back to their initial posi-

tion. This problem can be solved by reducing the inertia

of the particles (with parameters αls(f) and βls(f) intro-

duced in section 2.3), but then sources swapping could

occur when speakers cross. Parameters of the Tracking

module were tuned to find a trade-off between these

two scenarios.

Robot

x

y

z

0oo180

90o

-90o

(a) Scenario A

Robot

x

y

z

0oo180

90o

-90o

(b) Scenario B

Fig. 19: Positions of the moving sources

(a) Scenario A

(b) Scenario B

Fig. 20: Positions of the tracked sources

6 Conclusion

Compared to vision, there is not much hardware and

software tools to implement and experiment with robot

audition. The ManyEars Open Framework offers both

software and hardware solutions to do so. The pro-

posed system is versatile, portable and low-cost. The

ManyEars C library is compatible with ROS and pro-

vides an easy-to-use GUI for tuning parameters and

visualizing the results in real-time. Software and hard-

ware components can be easily modified for efficient in-

tegration of new audio capabilities to robotic platforms.

This new version of ManyEars has recently been used

to demonstrate a speaker identification algorithm [10],

and is currently used in augmented teleoperation and

human-robot interaction scenarios with IRL-1, a hu-

manoid robot with compliant actuators for motion and

manipulation, artificial vision and audition, and facial

expressions [8]. Integration of ManyEars and HARK li-

braries in ROS suggests that there is a potential for fur-

ther standardization of ROS audio components, which

could include data structures, standard DSP operations,

audio codecs, and Matlab / Octave script integration.

In addition, since the introduction of ManyEars, new

methods have been proposed to detect the exact num-

ber of active sources [5,14], for tracking moving people

[41], and for sound source separation using Indepen-

dent Component Analysis [18], and these could be eas-

ily added to the ManyEars open framework. This effort

would lead to a collection of useful, open source and

portable tools similar to OpenCV [23] for image pro-

cessing.
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