
ARMUS, an ARM Robotic Processing System for

Educational Purposes
Jean-Michel Aubin, Marius Bulota, Mathieu Gauthier, Jérome Marchand, Patrick-André Savard, Vincent

Simard-Bilodeau, Jean-Luc Ratté-Boulianne, François Michaud

Department of Electrical Engineering and Computer Engineering
Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

emails: {Jean-Michel.Aubin,Marius.Bulota, Mathieu.Gauthier, Jérôme.Marchand, Patrick-Andre.Savard,
Vincent.Simard.bilodeau, Jean-Luc.Ratte-Boulianne, Francois.Michaud}@USherbrooke.ca

Abstract – This paper describes the functionalities of
ARMUS, an ARM robotic processing system designed by a
team of fourth-year undergraduate students in electrical
engineering and computer engineering. This project intends
to replace the Handy Board, the current microcontroller
system used by first-year undergraduate students in our
curricula with a more powerful, versatile and up- to- date
technology, while preserving ease of use. Our ARMUS
processing system offers high processing and memory
capabilities at low energy consumption, for a price of around
300$CAD.

Index Terms – Robotic processing system, Robotic
education, Design project, Project-based curriculum.

I. INTRODUCTION

Engineering is a discipline concerned with putting
scientific knowledge to practical uses. Robotic design
always requires the integration of a mechanical structure to a
processing element. From smaller microcontroller boards
like BasicStamp, Microchip PIC, OOPIC, Lego Mindstorm
kit, iCricket [1] to embedded computing done using PC104
or laptop computers, a robot needs onboard processing
elements to process sensory data and to control its actuators.
The processing system becomes the central element on
which to build, and influences greatly what the robot will
be used for. In the case of education in robotics and
automation, the Handy Board [2] has gained large
acceptance over the last 10 years. Designed by Fred Martin
at MIT, the Handy Board is built around the Motorola
68HC11 microcontroller. It also uses Interactive C, a cross-
platform multi-tasking version of the C programming
language. The simplicity of this development environment,
the quality of the documentation and the amount of
information available on the Internet or shared between users
make the Handy Board an excellent tool to use to get
introduced to robotics. It has become widely used in robotic
competitions such as the Trinity College Fire-Fighting
Home Robot Contest [3].

Robotic design projects are very rich learning activities
in developing engineering skills. Our curricula recognize
this fact and use robotics for introducing electrical
engineering (EE) and computer engineering (CE) [4,5] to
first-year undergraduate students, and for introducing
mechatronics to second-year mechanical engineering
students. The Handy Board is used in such activities,
allowing students to benefit from its advantages. However,
they are also constrained by its technical limitations. For
instance, the Handy Board only handles a C-based

programming language, while it would be interesting to use
the platform to introduce students directly to C++.
Communication is limited to serial ports, while an Ethernet
link could broaden the type of applications for the robotic
device designed. Today’s technology can provide more
processing power and higher memory capability, improving
robotic capabilities, all at an acceptable price. In addition,
the 68HC11 microcontroller is no longer produced by
Motorola. Finally, more benefit could be reached if students
could work right away on devices and tools that could be
used in the industry.

To overcome these limitations, we decided to take on
the challenge of designing a more “state-of-the-art” robotic
processing system that could replace the Handy Board in
our pedagogical activities. Important requirements consist of
putting up a fully documented open hardware design system
that is sturdy, easy to repair and available at a low cost [6].
Compared to the Handy Board, we also want to add a
simulation environment for the processor: currently only
one robot is available to four students simultaneously,
which limits concurrent software development.

To create an optimal learning experience in engineering,
sciences, design skills, teamwork and communication, our
programs in EE and CE removed the barriers between
conventional courses and proposed a new learning paradigm
built on a competency-based framework. The approach is
built on problem-based and project-based learning (PPBL)
[7]. Instead of offering five regular classes (each of 3 credits)
during one semester, each semester is organized around a
theme and includes two types of activities: problem-based
learning units and a design project. Problem-based learning
units are conducted on average over a two-week period, each
unit being organized around a problem scenario. The design
project is conducted one day a week over the entire
semester. Each team is made up of 6 to 8 students in EE
and in CE, creating conditions in which teamwork
situations can be realistically experienced. Compared to the
conventional pedagogical approach, PPBL provides more
opportunities to contextualize what students have to learn.
For first-year undergraduate students, it also gives the
opportunity to confirm early on their interest in either EE or
CE.

This project also benefits from this approach by
involving seventh and eighth-semester undergraduate
students. These last two semesters address specialized EE
and CE skills such as artificial intelligence, robotics,
automation, software engineering, etc. One difference with

the previous six semesters is that the design project is now
conducted over two semesters, and it is worth 6 credits for
each student per semester. Design topics are opened and can
be determined by students, professors, researchers,
companies, etc., as long as the topics involve EE and CE
skills. ARMUS’ design is done in such a context with a
team of 4 EE students and 3 CE students. Having worked
with the Handy Board four years ago, these students are
well qualified to work on improving the robotic setup to
better address the need of first semester students, while at
the same time perfecting their EE, CE, design, cost analysis
and project management skills. Therefore, this project
provides double benefits in education and in the training of
students in robotics and automation.

The paper is organized as follows. Section II presents the
design specifications. Section III presents ARMUS’
hardware and software characteristics. Section IV compares
ARMUS with the Handy-ARM project [6] underway.
Section V concludes the paper by presenting the current
status of the design and its intended impacts.

II. DESIGN CONSIDERATIONS

The Handy Board [2] operates from a 9.6 Volt electric
source and is based on the Motorola 68HC11
microprocessor (8-bit). It includes a 32K battery-backed
static RAM, built-in recharging circuit, outputs for four 1
Amp DC motors, a 16x2 LCD screen, a piezo beeper, two
user-programmable but tons, one knob, IR
transmitter/receiver, SPI circuit (1 Mbaud serial peripheral
interface), and inputs for a variety of analog (7) and digital
(9) sensors. It is also possible to use an expansion board
with the Handy Board, providing 10 additional analog
sensor inputs, 4 inputs for active LEGO sensors, 9 digital
outputs, 6 servo-motors and one ultrasonic range sensor.
Our first year undergraduate EE and CE students also use a
sound generating device that allows the robot to play
messages recorded on a ISD ChipCorder (a single chip
device for voice recording and playback) [5]. This device is
interfaced directly with the Handy Board. The programming
environment for the Handy Board is Interactive C, a custom
C-language compiler. It was developed for educational
robotics applications with three considerations in mind:
interactivity (using an interpreted computer language
environment to easily interact while other programs are
running on the microcontroller); stability (reporting runtime
error for common programming problems rather than
crashing the system); and multitasking [2].

Since our objective is to replace such systems, this sets
out the minimal specifications for our project. Just like the
68HC11, the processor must be easily available and well
supported. The system should also consider its use in a
modular, distributed embedded processing approach [1,9].
Instead of designing a system that offers a limited set of
drivers and conditioning circuits for interfacing with sensors
and actuators, more versatility can be achieved if the system
is made to interface with other peripheral modules using
communication ports (e.g., SPI, CAN, USB).

Systems based on 68HC11 processors have shown to
build impressive robots in the past. However, capacities

required for advanced tasks (e.g., image analysis, high
bandwidth transmissions, complex audio encoding and
decoding, real-time closed loop control system) are
profoundly altered with the use of the 68HC11. On the
other hand, single board PCs in the PC104 form or any
adaptation of a small PC features strong support for today’s
top level language (C++, Java) and many open-source
applications. The problem is usually cost and power
consumption. Those processors are usually taken directly
from a PC, and their architecture was never intended for
very low-power embedded applications. In addition, the
external peripherals on those systems are based on PC
models, requiring the purchase of additional stack-up cards
to provide analog to digital channels or multiple high speed
I/Os. An interesting alternative could be embedded Linux
boards which are small, less expensive (e.g., KwikByte,
LOM9), low consumption, usually featuring an ARM7 or
ARM9. The use of open source software is an important
factor in reducing cost and facilitating portability and
acceptance, compared to proprietary real-time operating
systems (OS) (e.g., VxWorks). However, they are not
robotic-oriented, meaning that they do not offer servo
drivers, analog-to-digital converters, multiple I/Os, etc.

Regarding software programming, many implementations
of interpreted C exist today, providing a console-based
approach and nearly 100% C/C++ capability, such as CInt.
The main drawback to using an interpreted C
implementation is that it may be demanding to implement
it in an embedded system that aims to be as simple as
possible. For example, when it comes to shared library
handling, large projects suffer from a significant overhead
that may slow down development (e.g., standard libraries
need to be converted to the interpreted C environment). On
the other hand, a standard cross-compilation based approach
may seem too complex for a system aimed at first-year
undergraduate students. Nevertheless, it may be very
powerful and easy to use if it is well integrated in a simple
development environment.

Thus, overall, the challenge in this project is to come up
with a system that can be accessible for untrained users to
work on robotic aspects (and not have to learn about
processors, hardware, sophisticated programming), while at
the same time remain open to more complex applications
and advances computing capabilities.

III. ARMUS

A. Hardware
Fig. 1 presents the block diagram of ARMUS’ general

structure. It is based on the AT91RM9200 processor. This
choice is based on the following reasons:
• Atmel’s high quality documentation and support to

small capacity users.
• Having been on the market for some years now, the

AT91RM9200 processor has shown to be reliable for
our intended use, and easily available.

• It has very efficient power consumption, which is
important in mobile robotic applications.

• It is Linux compatible, ensuring low development cost.

• It features a 200 MIPS ARM920T processor with 16K-
byte instruction and 16K-byte data cache memories,
16K bytes of SRAM, 128K bytes of ROM, External
Bus Interface featuring SDRAM, Burst Flash and Static
Memory Controllers, USB Device and Host Interfaces,
Ethernet 10/100 Base-T MAC, Power Management
Controller, Real Time Clock, System Timer,
Synchronous Serial Controller, 6-channel Timer-
Counter, 4-channel USART, Two-Wire Interface, Serial
Peripheral Interface, Multimedia Card Interface and
Parallel I/O Controller.

ARMUS has five peripheral blocks aiming to maximize the
processor capabilities in the context of robotic applications:
• Memories: There are two types of ROM memory: a 8

MB parallel Flash which is write-protected and contains
the Linux Operating System; a Flash removable card,
ranging from 2MB to 8 MB capacity (for instance we
use Atmel’s 8 MB Dataflash AT45DCB008) for the
user-defined code. This is interfaced using a Serial
Peripheral Interface (SPI) protocol and is entirely
supported with our processor. For RAM memory, two
16 Mbytes SDRAM from Micron technology
(MT48LC16M16A2P-7E) for a total of 32 Mbytes, not
battery backed. Note that upgrading to 64 Mbytes is
possible. The Compact Flash drive provides additional

storage for miscellaneous data (e.g. MP3 files). It is a
rather inexpensive option, fully supported by Linux.

• Debug Ports: Based on the design considerations, our
system is equipped with a RS-232 serial port for
debugging and downloading purposes. This port is also
used for outputting the Linux console. Also included
are a JTAG port (only used by our design team for low-
level debugging), a LCD adaptor port and a simple
start/stop button.

• Communication Ports: The design options were
prioritized by general industry standards and for
providing extensibility to the system. First, an Ethernet
10/100 port is mandatory with current technology. The
MAC layer is fully supported by the CPU. The
physical layer chosen is the Intel LXT971A via a MII
interface. Second, because of its robustness and
increased use in the design of modular robotic systems
[9,10], a CAN port is included on the board. It uses the
MPC2515 and MCP2551 controllers made by
Microchip that communicate via SPI bus to CPU.
Finally, USB host and device connexions are a valuable
option for several peripheral connexions or simply for
communication with a desktop computer.

Figure 1: Bloc diagram of ARMUS’ hardware design.

Robot Oriented peripherals

Memories

S
D

R
A

M
 3

2
M

B

(E
x

te
rn

a
l

b
u

s

in
te

rf
a

c
e

)

//
 F

la
s

h
 8

 M
B

(E
x

t e
rn

a
l

b
u

s

in
te

rf
a

c
e

)

C
o

m
p

a
c

t
F

la
s

h
 S

lo
t

(E
x

te
rn

a
l

b
u

s

in
t e

rf
a

c
e

)

Debug Ports

S
e

ri
a

l
D

e
b

u
g

 P
o

rt

R
S

-2
3

2

(U
S

A
R

T
 i

n
te

rf
a

c
e

)

J
T

A
G

/I
C

E
 A

d
a

p
te

r

S
ta

rt
/S

to
p

 B
u

tt
o

n

L
C

D
 A

d
a

p
te

r

(E
x

te
rn

a
l

b
u

s

i n
t e

rf
a

c
e

)

Power Supply

Switching Power Supply 5

volts

Switching Power Supply 3.3

volts

Linear Regulator 1.8 volts

Communication Ports

CAN Controller

(SPI interface)

USB Port

(host and device)

Ethernet Port

(MII Interface)

A
u

d
io

 C
O

D
E

C

(I
2

S
 a

n
d

 T
W

I
in

te
rf

a
c

e
s

)

PIC 18F8310

(SPI interface)

4 dsPIC 30F3010

(SPI interface)

4
8

 d
ig

it
a

l

in
p

u
ts

/

o
u

tp
u

ts

10
 a

n
a

lo
g

in
p

u
t

c
h

a
n

n
e

ls

8
 P

W
M

o
u

tp
u

t

c
h

a
n

n
e

ls
 f

o
r

D
C

 m
o

to
r

8
 P

W
M

o
u

tp
u

t

c
h

a
n

n
e

ls
 f

o
r

s
e

rv
o

 m
o

to
r

8
 C

a
p

tu
re

/

C
o

m
p

a
re

in
p

u
t

c
h

a
n

n
e

ls

Atmel AT91RM9200
CPU

4
 q

u
a

d
ra

tu
re

e
n

c
o

d
e

r

in
te

rf
a

ce
s

8
 a

n
a

lo
g

in
p

u
t

c
h

a
n

n
e

l s

M
M

C
 S

lo
t

(S
P

I
In

te
rf

a
ce

)

Serial port RS -232

(USART interface)

ARM Linux 2.4.27-

vrs1 for

AT91RM9200

GDB

IDE (Qt)CygwinWindows Linux

Skyeye
Simulator

GCC Cross-compiling
Toolchain

uClibc /
uClibc++

Remote PC

ARMUS

File

System

EXT2

Ramdisk

Shell Busybox

Ethernet Link

GDB

Server

SSH

Server

SSH
Client

Remote

Console

U
Boot

Atmel Boot
Loader

TFTP

Server

TFTP
Client

uClibc /

uClibc++

Local
Console

SPI

CAN

I2C

Audio Chipset

Configuration
I/OPWM Dataflash

LCDSSC

Audio I /O
Device

Drivers

LibARMUS

PCMCIA Device

Manager
LibARMUS

Figure 2: Block diagram of ARMUS’ software programming environment

• Robotic-Oriented Peripherals: This block groups the
necessary input/output (I/O) ports for robotic projects.
ARMUS is equipped with a stereo audio CODEC
interfaced with microphone input from Texas
Instruments, (TLV320AIC23B, which is a commonly
used device in the industry), 48 digital I/Os, 8 analog
inputs, 4 PWM ports for DC motors (high frequency),
4 PWM for servo-motors (low frequency), 4 digital
capture ports and 4 quadrature input ports for encoders.
A PIC18F8310 is used to interface the digital and
analog I/Os. Four dsPIC30F3010 are used for the
PWM and other motor-related control devices. These
will allow students to also get introduced to PIC
microcontrollers. Note that an H-bridge is not
implemented directly on the board, making it possible
to use motors with the appropriate power requirements
for the intended application.

• Power Supply: A 5 Volts switching power supply
serves the PIC and the USB port. A 3.3 Volts
switching power supply feeds the I/O port and the
CPU. A 1.8 Volt linear regulator is used for the CPU’s
core demand. Note that because of the potentially high
power demand for our application, the board is
equipped with a switching power supply providing over
90% efficiency, thus higher battery lifetime.

B. Software
Fig. 2 illustrates ARMUS’ software architecture. It

represents software on the ARMUS board (installed on the
robotic platform), and software running on an external
computer (for code development of the intended robotic
application using the board). Communication between the

two is done using Ethernet, allowing rapid exchange (e.g.,
software download). It consists of three major elements:
• ARMUS Operating System: Combining our initial

specifications with our hardware design, we chose
ARM Linux as the OS. It is free, reliable, requires little
space (between 100 kB to 1 MB ROM memory), offers
a complete, sophisticated, multitasking environment,
and is of course supported by ARM architecture. Fig 2.
shows the services that should be implemented within
the OS, providing the required runtime tools for user
space applications: SSH server assures a remote link to
the platform; a GDB server provides developers with a
remote debugging interface; a TFTP server provides
easy file transfer capability.

• Device Drivers: Although ARM Linux has been
thoroughly ported to t h e AT91RM9200
microcontroller, its initial support targets the
AT91RM9200EK evaluation kit. Thus, several driver
designs are put in place to fulfill ARMUS’
functionalities, such as sound (I1O), CAN bus, and
LCD.

• Development environment: Fig. 3 illustrates the
development environment created for ARMUS. The
main challenge in designing our own development
environment is to fully adapt it to first year
undergraduate’s knowledge and learning objectives. A
QT-based interface (IDE (Qt)), providing a graphical
frontend to manipulate the underlying tools, will give

Figure 3: ARMUS’ Integrated Development Environment.

sufficient functionalities and ergonomy. It is also a
cross-platform toolkit, which means the interface can be
accessed both from Linux and Windows. Different
aspects are included in our design to provide an easy
setup for students. For instance, the makefile used to
cross-compile robotic applications will be taken in
charge automatically by ARMUS’ development
environment. This means that GCC will be used
transparently through the graphical interface. This
ensures that users unfamiliar with GCC and its
command-line interface will still be able to work with
the development environment. The environment will
also interact with various clients, that will
communicate with the target platform to enable services
(debugging, remote management, file transfer, etc.).

• Driver interface library: To ensure easiness of use by
undergraduate students, a software library design is
created to wrap driver (i.e. kernel-side) functions into a
simple API. Each driver module is wrapped using a
straightforward interface that, when used with the
ARMUS development environment, will help students
program robotic applications more easily.

• Simulator: Designing a simulator for a processing
system is a challenging task that takes important time
and effort. To reduce development time, we decided to
use SkyEye, an Open Source Software Project
(http://www.skyeye.org). SkyEye’s goal is to provide
an integrated simulation environment in Linux and
Windows. SkyEye environment simulates typical
embedded computer systems (e.g., Atmel AT91),
running some OS such as ARM Linux, uClinux,
uc/OS-II (ucos-ii) and analyze or debug them at source

level. Although still under development, Skyeye
provides a GBD (GNU Debugger)-like interface that
supports the simulation of many widely used
processors and their peripherals. This project may
bring, in the near future, a free and open simulation
opportunity that may help schools and universities
reduce the number of platforms needed for basic
development.

IV. ARMUS VS HANDY-ARM

In [6], Martin et al. presents the design specifications of
the next generation of the Handy Board. It is intended to be
more powerful than an 8-bit processor, but not as much to
run a full operating system such as Linux. Their motivation
is to do a lot with little, creating a platform simple and yet
extremely capable. The board is based on Atmel
AT91R4008 32-bit 66 Mhz ARM processor, coming with
256 Kbytes of internal static RAM. It will be equipped with
1 to 4 Mbytes of SRAM, 4 to 16 Mbytes of Flash ROM, a
Crystal Semi CS8900 10 BT Ethernet port, serial
communications ports, a LCD screen and motor drivers. It
is intended to run with a small operating system (e.g., eCos
OS), capable of running code compiled in C, C++ on a
desktop computer, or interpreted language such as Lisp or
Smalltalk.

ARMUS differs from the Handy-ARM by targeting
Linux as the OS and more widespread programming
languages (Lisp or Smalltalk are not taught to first-year
undergraduate students). ARMUS provides more memory
capability, communication ports, I/O ports, and considers
the LCD and motor drivers as external modules for
increased versatility. It does however take the same approach

of the Handy-ARM for I/O, using separate low-cost
microcontrollers (Microchop PICs). This provides features
that the Atmel processor does not offer (i.e., analog-to-
digital conversion), and electrically isolate robot circuits
from the Atmel processor. This prevents voltage spikes and
other disturbances that could cause hardware failures in the
main processor circuit.

IV. DESIGN STATUS AND FUTURE WORK

As of January 2006, the first ARMUS processing
system prototype was built, rigorously tested and minor
modifications were made to its design. Fig. 4 shows a
picture of the designed board (dimension 16 cm x 13 cm).
Several Linux device drivers were developed and tested to
provide solid peripheral functionality. A beta version of the
development environment has been created and, we believe,
showcases the ARMUS functionalities very well while
preserving easiness of use and ergonomy. The simulator’s
implementation has been delayed, since Skyeye is in active
development. Team members are keeping a close eye on the
project’s evolution and consider using a stable version as its
first candidate for implementation. The total budget for the
project is 3000 $CAD. Our effort in this project is evaluated
at 4000 hours. Based on our cost analysis, assuming that a
100 system would be produced in a first production phase,
the estimated cost of the system would be around 300
$CAD, with a 6% contingency and profit margin. This is a
little bit higher than the Handy Board (which is around
150$CAD, without labor for the assembly of the parts), but
is still a reasonable price for the functionalities provided by
ARMUS. As a possible extension to the system, a graphical
user interface for the simulator and other functionalities of
the programming environment would be useful. Such work
could be carried out by another senior design team in 2006,
ensuring the progress of the project and its use in Fall 2006
with first-year undergraduate EE and CE students.

Figure 4: ARMUS’ hardware.

As senior undergraduate students in EE and CE, we
have found this project to be an incredible design
experience. Conducting this project has allowed us to
elaborate our capacity to acquire important management
skills, overcome new technical difficulties in our
engineering training, and make good use of our design
skills. Our involvement goes farther than just satisfying the
academic criteria of our specialized design courses, for
which we are doing the work. We are also very encouraged
by the fact that our work will contribute to the training of
future engineers with state-of-the-art tools; four years ago we
benefited in a similar way when we received training using
the Handy Board. Our interest in robotics was initiated
then, and we hope that by using ARMUS, others will
become passionate about it as well.

ACKNOWLEDGMENT

F. Michaud holds the Canada Research Chair (CRC) in
Mobile Robotics and Autonomous Intelligent Systems.
This research is supported by Atmel Canada, Halo
Electronics and the Department of Electrical Engineering
and Computer Engineering of the Université de Sherbrooke.

REFERENCES

[1] F. Martin, F., K. Par, K. Abu-Zahra, V. Dulskiy, A. Chanler, A.
(2005). “iCricket: A programmable brick for kids' pervasive
computing applications.” Proceedings 2nd International Workshop
on Ubiquitous Computing, Miami Beach, FL, May 2005.

[2] F. Martin, The Art of Robotics: An Introduction to Engineering,
Addison-Wesley, 1998.

[3] D.J. Ahlgren, J.E. Mendelssohn, “The Trinity College Fire-Fighting
Home Robot Contest: A medium for interdisciplinary engineering
design”, in Proc. American Society for Engineering Education, June
1998.

[4] F. Michaud, G. Lachiver, M. Lucas, A. Clavet, "ROBUS – A mobile
robotic platform for Electrical and Computer Engineering
Education", IEEE Robotics and Automation Magazine, Special Issue
on "Robotics in Education: An Integrated Systems Approach to
Teaching", 20(3):20-24, 2003.

[5] F. Michaud, G. Lachiver, M. Lucas, A. Clavet, "Designing robot toys
to help autistic children - An open design project for Electrical and
Computer Engineering education", Proceedings American Society
for Engineering Education Conference, St-Louis Missouri, 2000.

[6] F. Martin, G. Pantazopoulos, “Designing the next-generation Handy
Board,” Proceedings of the Spring 2004 AAAI Symposium,
American Association for Artificial Intelligence, Stanford, CA.

[7] G. Lachiver, D. Dalle, N. Boutin, A. Clavet, F. Michaud, J.-M.
Dirand, "Competency- and project-based programs in Electrical and
Computer Engineering at the Université de Sherbrooke", IEEE
Canadian Review, 41:21-24, 2002.

[8] S. J. Ylönen, A. J. Halme, “WorkPartner – Centaur like service
robot,” Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, 727-732, 2002.

[9] F. Michaud, D. Létourneau, J.F. Paré, M.A. Legault, R. Cadrin, M.
Arsenault, Y. Bergeron, M.C. Tremblay, F. Gagnon, M. Millette, P.
Lepage, Y. Morin, S. Caron, S., "Multi-modal locomotion robotic
platform using leg-track-wheel articulations", Autonomous Robots,
Special Issue on Unconventional Robotic Mobility, 18(2):137-156,
2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

