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1 Introduction

Integration is one the most fundamentals problem in designing autonomous
mobile robots, especially for those that interact with people in real life set-
tings. Such robots have to combine a multitude of capabilities such as navi-
gation, localization and mapping, tracking and recognition, vision and audio
processing, graphical or natural interaction, planning and reasoning using dif-
ferent abstraction levels. Rapid and specialized progress in a variety of the
associated domains makes the simultaneous development of all these capabili-
ties a very challenging task. Reimplementing them all is not recommended to
make efficient progress in discovering the underlying issues with autonomous
reasoning of mobile robots. Integration of available and useful software appli-
cations is a more compelling approach, allowing to build on top of validated
implementations and design more sophisticated and complex systems.

Many existing programming environments, like Player [VGH03], CAR-
MEN [MRT03], CLARity [NWB+03], OROCOS [OC03], SmartSoft [Sch03],
MIRO [USEK02], ADE [AS04] and RCS [GMP+01], are all proposing dif-
ferent approaches for mobile robotics system development and integration.
Most of them are incompatible with each other for different reasons [OC03],
such as the use of specific communication protocols and/or mechanisms, dif-
ferent operating systems, robotics platforms, architectural concepts, program-
ming languages, intended purpose, proprietary source codes, etc. This leads
to code replication of common functionalities across different programming
environments, and to specific functionalities being often restricted to one
programming environment. The ability create shared software infrastructures
among the robotics community, based on common requirements and objec-
tives, is clearly an important goal to reach in order to avoid effort duplication
[WMT03] and assist developers in their scientific and engineering work.
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Identifying common requirements and objectives is challenging in the cur-
rent context considering that the robotics field is still in an early exploration
phase. A possible solution which could be valuable is to reuse existing pro-
gramming environments and interconnect them through a system integration
framework to benefit from their respective approaches, instead of having to
choose only one of them. The main objective of system integration frameworks
is to support one or many integration approaches (e.g. communication pro-
tocols, central repository, remote procedure call, dynamic and static linkage)
to interconnect heterogeneous applications with their own set of concepts and
requirements in a larger system.

MARIE (for Mobile and Autonomous Robotics Integration Environment)
is a system integration framework oriented towards a rapid prototyping ap-
proach to development and integration of new and existing softwares for
robotic systems [CLM+04] [CBL+06]. To achieve the integration challenge,
MARIE proposes an extendable collection of blackbox and whitebox frame-
works, as described in Section 2, allowing different development techniques to
add new functionalities in the system. MARIE is designed according to three
main software requirements:

1. Reuse available solutions. Integration of existing software components
is difficult considering that they are typically developed independently,
following their own set of requirements. Reusability in this context is
challenging but crucial for the evolution of the field, avoiding the need
for expertise in all the related areas that must be integrated.

2. Support multiple sets of concepts and abstractions. From high-
level decision-making developers to perceptual processing and motor con-
trollers designers, or from system analysts to testers, experts from many
fields and with different objectives have to contribute concurrently on the
same system. To cope with such multidisciplinary software development
effort, multiple sets of concepts and abstractions need to be supported.

3. Support a wide range of communication protocols, communi-
cation mechanisms and robotics standards. No unified protocol or
consensus has yet emerged from the robotics software community on stan-
dards to adopt. The robotics community still has to explore a great variety
of ideas, application areas (each one having its own set of constraints, e.g.,
space, military, human-robot interaction) and to cope with continuously
evolving computing technologies. Consequently, being able to interchange
communication protocols mechanisms and upcoming robotics standards
easily, without major code refactoring, means longer life cycle for actual
and future implementations.

The following sections present how MARIE follows these software require-
ments to create a middleware framework, a kind of system integration frame-
work, providing tools to create specialized middlewares for dedicated applica-
tions. MARIE’s efforts have been focused on distributed robotics component-
based middleware framework development, enhancing reusability of applica-
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tions and providing tools and programming environments to build integrated
and coherent robotics systems. Section 2 presents MARIE’s software archi-
tecture in relation to the targeted software requirements. It situates the three
principal frameworks used in MARIE: the Component Framework (Section
3), the Communication Abstraction Framework(Section 4) and the Configu-
ration Framework (Section 5). Section 6 presents Spartacus as a study case of
how MARIE can be used in a robotic implementation. Conclusions and future
work are presented in Section 7.

2 Software Architecture

MARIE’s software architecture can be explained from the following three
perspectives: component mediation approach, layered architecture and com-
munication protocol abstraction.

2.1 Component Mediation Approach

To implement distributed applications using heterogeneous softwares, MARIE
adapted the Mediator Design Pattern [GHJV94] to create a Mediator Interop-
erability Layer (MIL), as illustrated in Figure 1. The Mediator Design Pattern
primarily creates a centralized control unit (named Mediator) which interacts
with each class independently, and coordinates global interactions between
classes to realize the desired system. In MARIE, the MIL acts just like the
Mediator of the original pattern, but is implemented as a virtual communica-
tion space where applications can interact together using a common language
(similar to Internet’s HTML for example). With this approach, each appli-
cation can have its own communication protocols and mechanisms as long
as the MIL supports it. It is a way to exploit the diversity of communication
protocols and mechanisms, to benefit from their strengths and maximize their
usage, and to overcome the absence of standards in robotic software systems.
It also promotes loose coupling between applications by replacing a many-to-
many interaction model with a one-to-many interaction model. In addition
to simplifying each application communication interface, loose coupling be-
tween applications increases reusability, interoperability and extensibility by
limiting their mutual dependencies and hiding their internal implementation.
By using a virtual communication space approach, the MIL’s design reduces
the potential complexity of managing a large number of centralized classes,
as observed with the original pattern. This is mainly attributed to having
limited centralization of communication protocols and mechanisms, leaving
most of the functionalities decentralized. Although there is no such thing as
an instance of a Mediator in MARIE’s implementation, mediation is possible
through the Communication Abstraction Framework.
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Fig. 1. Original Mediator Pattern (left) and MARIE’s Distributed Mediator Adap-
tation (right)

2.2 Layered Architecture

Supporting multiple sets of concepts and abstractions can be achieved in dif-
ferent ways. MARIE does so by adopting a layered software architecture,
defining different levels of abstraction into the global middleware framework.
As shown in Figure 2, three abstraction layers are used to reduce the amount
of knowledge, expertise and time required to use the overall system. It is up
to the developer to select the most appropriate layer for adding elements to
the system. At the lower level, the Core Layer consists of tools for communi-
cation, data handling, distributed computing and low-level operating system
functions (e.g., memory, threads and processes, I/O control). The Component
Layer specifies and implements the Component Framework, the Communica-
tion Abstraction Framework and the Configuration Framework useful to build
new applications using the MIL. The Application Layer contains useful tools
to build and manage integrated applications to craft robotic systems.

2.3 Communication Protocol Abstraction

Integrated applications functionalities can often be used without any concerns
with the communication protocols, as they are typically designed to apply op-
erations and algorithms on data, independently of how data are received or
sent. This eases applications interoperability and reusability by avoiding fixing
the communication protocol during the design phase. Ideally, the communi-
cation procol choice should be made as late as possible, depending of which
applications need to be interconnected together (e.g., at the integration phase
or even at runtime). Therefore, a Communication Abstraction Framework,
called Port, is provided for communication protocols and applications inter-
connections.
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Fig. 2. MARIE’s Layered Architecture

3 Component Framework

The development of robotic applications using MARIE is based on reusable
software blocks, referred to as components, which implement functionalities by
encapsulating existing applications, programming environments or dedicated
algorithms. Components are configured and interconnected to implement the
desired system, using the software applications and tools available through
MARIE. Four types of components are used in the MIL:

1. Application Adapter (AA) : component interfacing useful applications
within the MIL and to enable them to interact with each other through
their standardized interface (i.e. Ports) and using MARIE’s shared data
types. Interconnections using Port communication abstraction are illus-
trated in Figure 3 with a small dot between communication links repre-
sented by arrows.

2. Communication Adapter (CA) : component that ensures communica-
tion between other components by adapting incompatible communication
mechanisms and protocols, or by implementing traditional routing com-
munication functions. Available Communication Adapters in MARIE are
Splitters, Switches, Mailboxes and Shared Maps. A Splitter sends data
from one source to multiple destinations without the sender needing to
be aware of the receivers. A Switch acts like a multiplexer sending data
to the selected output. A Mailbox creates a buffering interface between
asynchronous components. A Shared Map is used to share data, in the
key-value form, between multiple components.

3. Application Manager (AM) : system level component managing, on
local or remote processing nodes, Application Adapters and Communica-
tion Adapters. Application and Communication Adapters initialization,
configuration, start, stop, suspend and resume are handled by the Ap-
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plication Manager. When starting the system, the Application Manager
initializes the components following the adequate sequence.

4. Communication Manager (CM) : system level component dynami-
cally managing, on local or remote processing nodes, the communications
mechanisms (socket, port, shared memory, etc.).

Fig. 3. Component Framework Using the Mediator Interoperability Layer

Although the use of MARIE’s frameworks and software tools is highly en-
couraged to save time and efforts, MARIE is not limited to them. Developers
can use the best solution to integrate software applications and interconnect
components by having the possibility to extend or adapt existing components
and available frameworks. MARIE’s underlying philosophy is to complement
existing applications, programming environments or software tools, and there-
fore it is to be used only when required and appropriate.

Figure 3 presents an example of how software applications can be inte-
grated and interconnected in the MIL. Application A represents an integrated
application directly linked with the implementation of its AA (e.g., a library or
an open source application). When an application is integrated using an AA,
it can use the MIL communication mechanisms to exchange data with any
other components, as is the case for providing data to Application Adapter 2
and Application Adapter 3. Application B interacts with other applications in
two different ways. The first one needs Application Adapter 1 to transmit data
to Application Adapter 2, which convert them into a specific communication
protocol not supported by the MIL to make them available to Application B.
The second one is used to send back data to Application Adapter 3, using
a communication protocol supported by the MIL for direct interconnection
with any components. However, Application B and Application Adapter 3 do
not use compatible communication mechanisms or protocols. Interfacing them
requires a CA. Application Adapter 3 implements functionalities directly in
the MIL by encapsulating them in a stand-alone AA (e.g., a graphical user
interface implemented in the AA directly). Application C can already com-
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municate with Application B, and therefore no interconnection through the
MIL is required.

3.1 Main Concepts Supporting the Component Framework

The Component Framework is a whitebox framework enabling developers to
extend available functionalities or create new components. Existing function-
alities can be reused and extended by inheriting from framework base classes
and/or overriding pre-defined hook methods. Five main concepts present in
every component are provided by the Component Framework and illustrated
in Figure 4 :

• Handler : handles the behavior of the component. Every Handler must
support the init, start, stop, suspend, resume, reset and quit messages
that are received through their Request Interface. Execution flow of the
Handler can be customized to adapt its own implementation needs (based
on iterations, messages, interrupts, states-machine, etc).

• VisitorConfig : holds configuration information for the component. It is
extracted from the configuration data structure created by the Configu-
rator. The configuration information will then be used by the Handler in
the initialization phase of the component.

• Director : handles and manages execution of requests (such as init, start,
stop, etc.) and forwards them to the component’s Handler to execute spe-
cialized functionalities if needed.

• Configurator : handles configuration requests, parsing of the configura-
tion file format, and creation of the Configuration Data Structures to be
forwarded to the component’s Handler.

• Builder : builds the component using the specialization of the different
elements composing a component : the Director, the Configurator, the
Handler, and their respective execution flow mechanisms.

To explain what is required to create a component, Figure 5 illustrates
the Splitter Communication Adapter. The Splitter is typically used to route
data from one or more source Ports to multiple destination Ports. This mech-
anism is handled by the Splitter Handler. The Splitter Handler uses an Iterate
Execution Mechanism to monitor the Splitter Handler behavior. The Iterate
Execution Mechanism refers to an internal loop that runs at a determined cy-
cle inside the Handler. Sending and receiving data from Ports is event-based
and is triggered by the main communication loop sending the data as soon
as it arrives (not shown in Figure 5). As shown in Figure 5, Ports on the left
(A0 to An) and Ports on the right (B0 to Bn) are grouped together to form
Group A and Group B. The Splitter can support any number of ports in each
group. The configuration of the Splitter supports three modes, which selects
how the data flows between Group A and Group B:

1. Mode AB. Communicates one way from Group A to Group B.
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Fig. 4. MARIE’s Components Composition

2. Mode BA. Communicates one way from Group B to Group A.
3. Mode ABBA. Communicates in both ways (bi-directional) between

Group A and Group B.

To configure the Splitter Communication Adapter, the XML Configurator
is used. It parses the XML configuration files and forwards the Configura-
tion Data Structure to the Splitter Handler. The Splitter VisitorConfig then
uses the Configuration Data Structure to get the appropriate configuration at
initialization. The Default Director forwards execution requests (start, stop,
etc.) to the Splitter Handler.

4 Communication Abstraction Framework

The Communication Abstraction Framework, illustrated in Figure 6, offers an
abstraction on how communications are achieved by components, using a Send
& Receive Interface to send and receive data. This interface hides implemen-
tation details of communication protocols and mechanisms that execute send
and receive requests. Those communication protocols and mechanisms are en-
capsulated in Communication Strategy (CS) classes in order to be more easily
reused and extended. The Strategy Design Pattern [GHJV94] is applied to CS
to define a set of interchangeable algorithms and to create a loosely coupled
relation between CS’s clients and implementation details of communication
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Fig. 5. MARIE’s Splitter Composition

protocols and mechanisms. Currently supported Communication Strategies
are :

• SocketAcceptor. TCP/IP socket-based server accepting one connexion
on a specified port.

• SocketConnector. TCP/IP socket-based client connecting to the server
on a specified port.

• SharedMemAcceptor. Memory-based server accepting one local (on the
same processing node) connexion.

• SharedMemConnector. Memory-based client connecting to the local
server.

The Send & Receive interfaces also hides data operations that needs to
be applied in order to fulfill communication protocols requirements on data
representation. Those operations are encapsulated in Cascading Functional
Block (CFB) classes, that can be chained together in a cascaded manner to
execute the appropriate sequence of operations on sent and received data.
MARIE currently provides four kinds of CFBs :

• XMLFormatter : marshalls MARIE’s objects (data structures in mem-
ory) in an homemade XML representation to be send to a byte stream
CS.

• XMLExtractor : unmarshalls the XML data representation of MARIE’s
data objects from the byte stream CS to create new MARIE data objects.
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• ImageFormatter : marshalls MARIE’s Image objects in an optimized
serialized data representation to be send to a byte stream CS.

• ImageExtractor : unmarshalls the image optimized serialized data rep-
resentation from the byte stream CS to create a new MARIE Image data.

Fig. 6. Communication Abstraction Through the Port Interface

The Communication Abstraction Framework can be extended or special-
ized knowing that Ports are not tightly coupled to the Component Frame-
work. This means that the Communication Abstraction Framework could be
redesigned to handle specialized functionalities (error handling, signals, etc.)
without having a major impact on existing implementations. However, it is is
highly recommended to use the Send & Receive Interface for standardization
of communications with components.

5 Configuration Framework

MARIE’s Configuration Framework, shown in Figure 7, offers a generalization
of configuration representation in order to use the same data structure for
all the components configurations. Four types of configuration elements are
available in the Configuration Framework representing the Configuration Data
Structures :

1. Configuration. Composite configuration element that gives a name to a
current configuration structure and contains other configuration elements.

2. Type. Composite configuration element that represents a type contained
in the component’s description domain. A type element can be composed
of multiple configuration elements.

3. Key-Value. Primitive configuration element that identifies a specific
property of an object. The configuration element is represented by a label
(Key) and have a value (Value).

4. Qualifier. Composite configuration element that represents an attribute
for refining configuration element semantics. It can be useful to categorize
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or discriminate configuration elements from each other. A qualifier element
can be applied on any other configuration element.

Fig. 7. Configuration Framework Architecture

To support execution of Configuration Data Structures’ operations (read,
write, modify, etc.), the Visitor and Composite Design Pattern [GHJV94] are
used. The of the Visitor Design Pattern is to encapsulate operations to be
performed on a data structure in a class, called a visitor, that can traverse
the data structure. Having different kinds of configuration elements in the
Configuration Framework (primitive and composite), applying the Composite
Design Pattern to the Configuration Data Structures’ elements permits to the
visitor to treat each kind of elements as they were exactly the same, which
reduces visitor’s implementation complexity.

Generally, the Configuration Framework is used as a blackbox framework
by creating required visitors to fetch data configuration in Configuration Data
Structures, by extending the Visitor abstract class. Other configuration ma-
nipulations, such as parsing configuration files and creating the Configuration
Data Structures, are handled automatically. In the current implementation,
an XML based generic parser (not shown in Figure 7) is responsible of creat-
ing the Configuration Data Structures by parsing the XML configuration file.
If required, new parsers supporting other representations and languages can
be added in the framework without the need to change existing visitor classes.

The following example shows a sample Splitter configuration file. All four
configuration elements are present in this Splitter sample configuration file.
Each XML node contains an attribute named ”elem” which can be set to
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four values : conf for Configuration element, type for Type element, kv for
Key-Value element and q for Qualifier element. This configuration represents
a Splitter with one Port in its Group A and two Ports in its group B. Group A
and B are represented as qualifiers in the configuration file, providing in which
group each Port must be instantiated. Data flows from Group A to Group B as
the “mode” Key-Value states. Port A0 is configured to use the SocketAcceptor
communication strategy listening on port 30004. Port B0 is configured to
also use the SocketAcceptor communication strategy, listening on port 30000.
Port B1 is configured to use the Socket Connector communication strategy,
connecting to host 192.168.43.67 on port 30030.

<?xml version="1.0"?>
<splitter elem="conf">

<mode elem="kv">AB</mode>
<groupA elem="q">

<port elem="type">
<type elem="kv">Default</type>
<name elem="kv">A0</name>
<cs elem="type">

<type elem="kv">SocketAcceptor</type>
<portnumber elem="kv">30004</portnumber>

</cs>
</port>

</groupA>
<groupB elem="q">

<port elem="type">
<type elem="kv">Default</type>
<name elem="kv">B0</name>
<cs elem="type">

<type elem="kv">SocketAcceptor</type>
<portnumber elem="kv">30000</portnumber>

</cs>
</port>
<port elem="type">

<type elem="kv">Default</type>
<name elem="kv">B1</name>
<cs elem="type">

<type elem="kv">SocketConnector</type>
<portnumber elem="kv">30030</portnumber>
<hostname>192.168.43.67</hostname>

</cs>
</port>

</groupB>
</splitter>

6 Spartacus’ Implementation Using MARIE

Spartacus [MBC+05], shown in Figure 8, is a socially interactive mobile robot
designed to enter the AAAI Mobile Robot Challenge. Introduced in 1999,
the AAAI Challenge consists of having a robot start at the entrance of the
conference site, find the registration desk, register, perform volunteer duties
(e.g., guard an area) and give a presentation [MSJ+04]. The long-term objec-
tive is to have robots participate just like humans attending the conference.
We became interested by this challenge because of the need to address all
design dimensions for such a robot, from the hardware level to the high-level
decision-making algorithms.
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Fig. 8. Spartacus Robot

Spartacus is equipped with a SICK LMS200 laser range finder (for au-
tonomous navigation), a Sony SNC-RZ30N 25X pan-tilt-zoom color camera,
an array of eight microphones placed on the robot’s body, a touchscreen and
a business card dispenser. High-level processing is carried out using an em-
bedded Mini-ITX computer (Pentium M 1.7 GHz). The Mini-ITX computer
is connected to the low-level controllers through a CAN bus device, the laser
range finder through a serial port, the camera through a 100Mbps Ethernet
link and the audio amplifier and speakers using the audio output port. A
laptop computer (Pentium M 1.6 GHz) is also installed on the platform and
is equipped with a RME Hammerfal DSP Multiface sound card using eight
analog inputs to simultaneously sample signals coming from the microphone
array. Communication between the two on-board computers is accomplished
with a 100Mbps Ethernet link. Communication with external computers can
be achieved using the 802.11g wireless technology, giving the ability to easily
add remote processing power or capabilities if required. All computers are
running Debian GNU Linux.

Numerous algorithms are required to accomplish the Challenge, and here
is what we implemented for our 2005 participation to the event:

• Autonomous Navigation. When placed at the entrance of the conven-
tion center, the robot autonomously find its way to the registration desk
by wandering and avoiding obstacles, searching for information regard-
ing the location of the registration desk and potentially following people
moving in this direction. Once registered, the robot can use a map of
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the convention center. The two navigation tools used are CARMEN and
pmap. CARMEN, the Carnegie Mellon navigation toolkit [MRT03], is a
software package for laser-based autonomous navigation using a map pre-
viously generated. The pmap package1 provides a number of libraries and
utilities for laser-based mapping (SLAM) in 2D environments to produce
high-quality occupancy grid maps.

• Vision Processing. Extracting useful information in real time from im-
ages taken by the onboard camera improves interaction with people and
the environment. For instance, the robot could benefit from reading vari-
ous written messages in real life settings, messages that can provide local-
ization information (e.g., room numbers, places) or identity information
(e.g., reading name badges). Object recognition and tracking algorithms
also makes it possible for the robot to interact with people in the envi-
ronment. We use two algorithms to implement such capabilities : one that
can extract symbols and text from a single color image in real world con-
ditions [LMV04]; and another one for object recognition and tracking to
identity and follow regions of interest in the image such as human faces
and silhouettes.

• Sound Processing. Localization of sound sources provides important
clues about the world. However, simply using one or two omnidirectional
microphones on a robot is not enough: it proves too difficult to filter out
all of the noise generated in public places. Using a microphone array is
a better solution for the localization, tracking and separation of sound
sources. Our approach is capable of simultaneously localizing and tracking
up to four sound sources that are in motion over a 7 meters range, in
the presence of noise and reverberation [VMHR1]. We also developed a
method to separate in real-time the sound sources [VRM04] in order to
simultaneously process vocal messages from interlocutors using software
packages such as Nuance2.

• Touchscreen Display. Various information can be communicated through
this device, such as: receiving information from people using a menu inter-
face; displaying graphical information such as a PowerPoint presentation
or a map of the environment; and expressing emotional states using a
virtual face.

MARIE’s design and implementation evolved as we worked on Spartacus’
implementation. MARIE’s current version is in C++ (˜10 000 lines of code)
and uses the ACE (Adaptive Communication Environment) library [Sch94]
for the Core Layer functions (low-level operating system functions). Although
ACE met Spartacus’ implementation needs, MARIE does not rely on this
specific library as the Core Layer and it can be replaced if required. MARIE’s
Application Manager is partially implemented in MARIE, meaning that AA

1 http://robotics.usc.edu/˜ahoward/pmap
2 http://www.nuance.com/
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and CA must be initialized manually from scripting commands. Also, the CM
is not yet implemented, and component configuration must be set manually.

Spartacus’ implementation requires 45 components (˜50 000 lines of code)
composed of 26 AA, 17 CA and two external applications (the Audio Server
and NUANCE). Application Adapters are used to interface the different soft-
ware applications required for decision-making by the robot. Mailboxes, Split-
ters, Shared Maps and Switches are used as Communication Adapters. Ex-
cept for the two external applications, component interconnections are all
sockets-based using Push, Pull and Events dataflow communication mecha-
nisms [Zha03] with XML encoding for data representation; the Audio Server
and Nuance use their own communication protocols.

Fig. 9. Partial Representation of Spartacus’ Software Architecture

Partial representation of Spartacus’ software architecture is illustrated in
Figure 9. It covers sensing and acting in simulation and real robot setups, lo-
calization, path planning, sound source localization, tracking and separation,
speech recognition and generation, and part of the computational architecture
[MBC+05] responsible for the robot’s navigation, reasoning and interactions
capabilities. In the real robot setup, SpartacusAA combines wheels odometry
and gyroscopic (through GyroAA interfacing a gyroscope installed on Sparta-
cus) data, and pushes the result at a fixed rate (10 Hz) to its interconnected
component. Laser data is collected by PlayerAA, interfacing the Player library
specialized for sensor and actuator abstraction [VGH03], supporting the SICK
LMS200 laser range finder installed on Spartacus. PlayerAA pushes data at a
fixed rate (10 Hz) to connected components. In the simulation setup, odome-
try and laser data are both collected with PlayerAA, as generated using Stage
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(2D) or Gazebo (3D) simulators [VGH03]. CARMEN Localizer AA and CAR-
MEN Path Planner AA provide path planning and localization capabilities.

RobotFlow and FlowDesigner programs [CLM+04] are used to implement
Behavior & Arbitration FD AA, handling part of the computational architec-
ture. RobotFlow (RF) [CLM+04] and FlowDesigner (FD) are two modular
data-flow programming environments that facilitate visualization and under-
standing of the robots control loops, sensor and actuator processing. They are
also appropriate for rapid prototyping since the graphical user interface en-
ables the user to connect reusable software blocks without having to compile
the program every time minor changes are made. In the Behavior & Arbi-
tration FD AA component, RF/FD programs implement behavior-producing
modules arbitrated using a priority-based approach. It uses data coming from
different elements such as localization, path plan, laser, audio localization,
dialog command and system states. It uses an asynchronous pull mechanism
to get its data, requiring the use of Mailbox CA components, and generates
motor commands at a fixed rate (5 Hz).

The Audio Server is interfacing the RME Hammerfal DSP Multiface sound
card, and Nuance Server is interfacing Nuance. DialogueAA is a stand-alone
AA that manages simultaneous conversations with people. This is made pos-
sible with the use of AUDIBLE FD AA, interfacing our sound source local-
ization, tracking and separation algorithms implemented with RF/FD and
using Spartacus’ microphone array. It generates a number of separated au-
dio channels that are sent to Nuance Server and Behavior & Arbitration FD
AA. Recognized speech data is sent to Dialog AA, responsible of the human-
robot vocal interface. Speech generated by the robot is handled by Festival
[Tay99]. Dialogue AA also provides data to the Behaviors & Arbitration FD
AA. The global execution of the system is asynchronous, having most of the
applications and AAs pushing their results at a variable rate, based on the
computation length of their algorithms when triggered by new input data.
Synchronous execution is realized by having fixed rate sensors readings and
actuators commands writings.

6.1 Discussion

Using MARIE with Spartacus provided interesting capabilities for software in-
tegration and team development. At the peak of Spartacus’ software develop-
ment process, eight software developers, including audio and image processing
specialists, AI specialists, robot hardware specialists, Core Layer specialists
and the integrator, were working concurrently on the system. Most of them
only used Application Adapters (Component Layer) to create their compo-
nents, conducting unit and blackbox testing with pre-configured system setups
(Application Layer) given by the integrator. Communication protocols and op-
erating system tools for component and application developments (CoreLayer)
were added by the Core Layer specialists when required. Components were
incrementally added to the system as they became available. It took around



MARIE 37

eight days, spread over a four weeks period, to complete a fully integrated
system.

Overall, nine existing specialized applications/libraries were integrated to-
gether to build the complete system: Player/Stage/Gazebo, Pmap, CARMEN,
Flowdesigner/RobotFlow, AUDIBLE, Nuance, Festival, AUDIBLE, QT3 and
OpenCV. Each of these applications required different integration strategies.
For instance, Nuance is a proprietary application with a specific and limited
interface. Integrating Nuance in an AA was challenging because its execution
flow is tightly controlled by Nuance’s core application, which is not accessible
from the available interface. To solve this problem, we created an indepen-
dent application that uses a communication protocol already supported by
the MIL. CARMEN, on the other hand, is composed of small executables
communicating through a central server. CARMEN’s integration was real-
ized by creating an AA that starts several of these executables depending on
the required functionality and on data conversion from CARMEN’s to MIL’s
format. Having a flexible Component Framework and Ports as the communi-
cation protocol abstraction allowed us to adapt application specificities such
as external threads execution, dynamic bindings, independent protocols and
timing.

Choosing XML data representation for common language communica-
tion in the MIL was based on implementation simplicity and ease of de-
bugging. Although it was sufficient for most of the system communication
needs, we clearly observed that this solution was not sufficient to support
communication-intensive data like audio and vision within MARIE. To avoid
using valuable time to support optimized protocols for audio and video, we
decided to use FlowDesigner that already provides those protocols.

With regard to component interoperability, the ability to change between
simulation and robotic setups with only few system modifications gave us the
possibility to do quick simulations and integration tests. Nearly 75% of the
system functionalities were validated in simulation and were also used as is
in the real world setup. In both simulated and real setups, configurations of
components receiving laser and odometry data are exactly the same, abstract-
ing data sources and benefiting from components modularity and the rapid
prototyping approach. Moreover, component interoperability can be extended
with MARIE to do things like porting a computational architecture on robotic
platforms from different manufacturers and with heterogeneous capabilities,
or evaluating performances of algorithms implementing the same function-
ality (e.g., localization, navigation, planning) using the same platform and
experimental settings.

Distributing applications across multiple processing nodes was not diffi-
cult with MARIE, having chosen network sockets as the transport mechanism.
We initially used a shared memory transport mechanism to accelerate com-
munication between components on the same computer. Changing from one
transport mechanism to another was transparent using Ports and support-
ing shared memory interconnection in the MIL. Since no noticeable impact
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was observed over the global system performances using either of them, we
chose to exclusively use socket transport mechanism. It allows us to move
components from one processing node to the other easily.

Meeting Spartacus’ integration needs using MARIE rapid-prototyping ap-
proach highlighted three interesting consequences on robotics system devel-
opment. First, it revealed the difficulty of tracking decisions made by the
system simply by observing its behaviors in the environment, something that
was always possible with simpler implementations. The system reached a level
of complexity where we needed to develop a graphical application to follow
on-line or study off-line the decisions made by the robot. This suggests that
creating analysis tools and supporting them in the integration environment
can play a key role in working with such a highly-integrated system. The
second observation emerged from the number of components involved in the
software architecture. Manually configuring and managing the system with
many components executed on multiple processors, is an error-prone and te-
dious task. In this context, MARIE would greatly benefit from having GUI
and system management tools to build, configure and manage components
automatically. Third, regarding design optimization, being able to quickly in-
terconnect components to create a complete implementation, without focusing
on optimization right away, proved beneficial in identifying real optimization
needs. Such an exploration strategy gave us the ability to quickly reject nec-
essary applications, software designs or component implementations without
investing too much time and effort. For Spartacus, we originally thought that
tighter synchronization between components would be necessary to obtain a
stable system and support real-time decision-making. For instance, having
connected all of Spartacus’ components together, we observed that perfor-
mances were appropriate with the processing power available as long as we
did not overload the computers with too many components. Noticing that,
we decided to wait before investing time and energy working on component
synchronization, to focus on Spartacus’ integration challenges.

7 Conclusion

MARIE is a system integration framework oriented towards a rapid-prototyping
approach to create robotic systems. To achieve this goal, MARIE is based on
the mediation principle and uses a layered framework architecture to facil-
itate the creation, integration and interconnection of existing applications,
programming environments or software tools available in the robotics com-
munity. Interconnections of applications are supported by a communication
framework that is able to support a wide range of communication protocols,
communication mechanisms, and upcoming robotics standards. To ease efforts
required to integrate the work of multiple developers, MARIE also supports
team development requirements with two design choices : 1) the layered archi-
tecture allows each developer to work at the appropriate level of abstraction,
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related to his contribution to the system, and 2) the component architecture
lets developers work independently on each component. This tends to reduce
the required knowledge to contribute to the system and accelerates the overall
development cycle.

MARIE was experimented during Spartacus’ software architecture devel-
opment, which is the first software architecture implementation using MARIE.
From this experience, we have observed that an integrated programming envi-
ronment such as MARIE helps us focus on the decision-making issues and the
high-level capabilities development rather than on low-level software program-
ming considerations and integration issues. MARIE’s integration framework
was flexible enough to support the integration and interconnection of all the
existing and new applications required for Spartacus’ software architecture.
Using a rapid-prototyping approach is well suited to rapidly identify critical
development sections from less-critical ones, just by being able to work with
the complete system at the very beginning of the development cycle.

More testing will be performed on Spartacus to validate MARIE’s archi-
tectural design and implementation. We are currently working on identifying
and implementing tools to measure system real-time performances and on
software metrics to quantify MARIE’s computational overhead. Additional
work is also planned on the Application Layer, in which we hope to develop
further useful applications and automated tools to manage the overall system
and the underlying components.
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