From IntRoLab

Jump to: navigation, search


Children-Robot Interaction

Roball - Roball, Spherical Robot

Roball.jpg Roball2.jpg


Considering making a robot that can move in a home environment, filled with all kinds of obstacles, requires particular locomotion capabilities. A mobile robotic toy for toddlers would have to move around other toys and objects, and be able to sustain rough interplay situations. Encapsulating the robot inside a sphere and using this sphere to make the robot move around in the environment is one solution. The robot, being spherical, can navigate smoothly through obstacles, and create simple and appealing interactions with toddlers. The encapsulating shell of the robot helps protect its fragile electronics. Roball's second prototype was specifically developed to be a toy and used to study interactions between a robot and toddlers using quantitative and qualitative evaluation techniques. Observations confirm that Roball's physical structure and locomotion dynamics generate interest and various interplay situations influenced by environmental settings and the child's personality. Roball is currently being used to see how child interaction can be perceived directly from onboard navigation sensors.



Tito - Robot Interacting with Children with Autism

TitoSchema.jpg Tito.jpg



  1. Salter, T., Michaud, F.,, Larouche, H. (2010), “How wild is wild? A taxonomy to categorize the wildness of child-robot interaction,” International Journal of Social Robotics, 2(4):405-415. (pdf)
  2. Salter, T., Michaud, F. (2010), “Innovations in robotic devices and autism,” book chapter contribution on Pediatric Rehabilitation Engineering: From Disability to Possibility. ([1])
  3. Salter, T., Michaud, F., Létourneau, D. (2009), “A preliminary investigation into the effects of adaptation in child-robot interaction,” Proceedings FIRA International Conference on Social Robotics, August. (pdf)
  4. Salter, T., Werry, I. P., Michaud, F. (2008), “Going into the wild in child-robot interaction studies - Issues in social robotic development,” Intelligent Service Robotics – Special Issue on Multidisciplinary Collaboration in Socially Assistive Robotics, 1(2):93-108, May. (pdf)
  5. Duquette, A., Michaud, F., Mercier, H. (2007), “Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism,” Autonomous Robots – Special Issue on Socially Assistive Robotics 24(2): 147-157. (pdf)
  6. Salter, T., Michaud, F., Létourneau, D., Lee, D.C., Werry, I.P. (2007), “Using proprioceptive sensors for categorizing interactions,” ACM/IEEE Human-Robot Interaction Conference. (pdf)
  7. Michaud, F., Salter, T., Duquette, A., Laplante, J.-F. (2007), "Perspectives on mobile robots used as tools for pediatric rehabilitation", Assistive Technologies, Special Issue on Intelligent Systems in Pediatric Rehabilitation, 19: 14-29. (pdf)
  8. Michaud, F., Larouche, H., Larose, F., Salter, T., Duquette, A., Mercier, H., Lauria, M. (2007), "Mobile robots engaging children in learning", Canadian Medical and Biological Engineering Conference, Toronto, juin. (pdf)
  9. Michaud, F., Salter, T., Duquette, A., Mercier, H. (2007), Larouche, H., Larose, F., “Assistive technologies and child-robot interaction”, Proceedings American Association for Artificial Intelligence Spring Symposium on Multidisciplinary Collaboration for Socially Assistive Robotics, Stanford, March. (pdf)
  10. Laplante, J.-F., Masson, P., Michaud, F. (2007) ”Analytical longitudinal and lateral models of a spherical rolling robot,” Technical Report, Department of Electrical Engineering and Computer Engineering. (pdf)
  11. Duquette, A., Mercier, H., Michaud, F. (2006), “Investigating the use of a mobile robotic toy as an imitation agent for children with autism,” Proceedings International Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, Paris, France. (pdf) Présenté aussi lors de la Quatrième rencontre du Réseau interdisciplinaire Autisme-Science.
  12. Salter, T., (2006), "Navigational and proprioceptive sensor-based recognition of interaction patterns between children and mobile robots", Ph.D. Thesis, Computer Science Department, University of Hertfordshire, december. (pdf)
  13. Michaud, F., Laplante, J.-F., Larouche, H., Duquette, A., Caron, S., Masson, P. (2005), "Autonomous spherical mobile robot to study child development", IEEE Transactions on Systems, Man, and Cybernetics, 35(4): 471-480.(pdf)
  14. Salter, T., Michaud, F., Dautenhahn, K., Létourneau, D., Caron, S. (2005) “Recognizing interaction from a robot’s perspective,” Proceedings IEEE International Workshop on Robot and Human Interactive Communication, Nashville USA, 178-183. (pdf)
  15. Laplante, J.-F. (2004), "Effet de la dynamique d'un robot sphéraique et de son effet sur l'attention et la mobilité des jeunes enfants", Mémoire de maîtrise, Département de génie électrique et de génie informatique, Université de Sherbrooke, août. (pdf)
  16. Michaud, F., Duquette, A., Nadeau, I. (2003), "Characteristics of mobile robotic toys for children with Pervasive Developmental Disorders", Proceedings IEEE Conference on Systems, Man, and Cybernetics, 2938-2943. (pdf)
  17. Michaud, F., Caron, S. (2002), "Roball, the rolling robot", Autonomous Robots, 12(2): 211-222. (pdf)
  18. Michaud, F., Théberge-Turmel, C. (2002), "Mobile robotic toys and autism", Socially Intelligent Agents - Creating Relationships with Computers and Robots, Kerstin Dautenhahn, Alan Bond, Lola Canamero, Bruce Edmonds (editors), Kluwer Academic Publishers, pages 125-132. (pdf)
  19. Michaud, F., de Lafontaine, J., Caron, S. (2001), "A spherical robot for planetary exploration", Proceedings 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), Canadian Space Agency, St-Hubert Québec. (pdf)
  20. Roball - the rolling robot. F. Michaud, S. Caron. U.S. Patent #6,227,933, May 8, 2001.
  21. Michaud, F. (2000), "Social intelligence and robotics", Proceedings from the 2000 AAAI Fall Symposium - Social Intelligent Agents: The Human in the loop, Cape Cod Massachussetts, 127-130. (pdf)
  22. Michaud, F., Caron, S. (2000), "Roball - An autonomous toy-rolling robot", Proceedings Workshop on Interactive Robotics and Entertainment (WIRE), CMU Robotics Institute and AAAI, Pittsburgh Pennsylvania, 127-134. (pdf)
  23. Michaud, F., Caron, S. (2000), "An autonomous toy-rolling robot", Proceedings PRECARN-IRIS International Symposium on Robotics (ISR), Montréal Québec, 114-119. (pdf)
  24. Michaud, F., Lepage, P., Leroux, J.-D., Clarke, M., Bélanger, F., Brosseau, Y., Neveu, D. (2000), "Mobile robotic toys for autistic children", Proceedings PRECARN-IRIS International Symposium on Robotics (ISR), Montréal Québec, 180-181. (pdf)
  25. Michaud, F., Lachiver, G., Lucas, M., Clavet, A. (2000), "Designing robot toys to help autistic children - An open design project for Electrical and Computer Engineering education", Proceedings American Society for Engineering Education (ASEE) Conference, St-Louis Missouri. This paper received the Best Paper Award of the conference, over 725 papers. (pdf)


  • François Michaud
  • Patrice Masson
  • Jean-François Laplante
  • Serge Caron
  • Dominic Létourneau
  • Tamie Salter
  • Audrey Duquette
  • Hélène Larouche
  • François Larose